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Low thrust transfers, which are attractive for mass consumption, lead to long
transfers with many revolutions around the Earth. Both minimum time and fuel
saving strategy transfers can be easily formulated using the maximum principle of
Pontryagin. However, the associated boundary value problems are numerically
unstable and cannot be solved as these low-thrust transfers are modeled by so-called
"rapidly rotating" problems. Moreover, the difficult problem of finding good initial
estimation of the adjoint variables still remains. Two main techniques have been
applied to solve these two problems. First averaging method is used to average the
differential equations of the optimal problem over one orbital revolution. In
eliminating rapid oscillations, the resulting problem is simpler to solve than the
initial one. Secondly, the problem of adjoint variable estimation is solved using
related but simpler transfer whose solution gives a good estimation of the adjoint
variables. This paper describes a software, developed at CNES, where these
techniques have been implemented to solve minimum time transfers. This software
shows to be a powerful tool to solve most of Earth transfer problems. It is distributed
by CNES as a Freeware. A low-thrust geostationary transfer is presented as a test
case.

.H\� ZRUGV: low-thrust transfer software, optimal control problem, averaging
techniques.
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Low-thrust transfers become today of real interest as these transfers require less propellant and thus increase
the begin of life mass of the satellite. However, these transfers require much longer time than classical ones and
priority should be given to minimum-time strategy. Contrary to impulsionnal one, a low-thrust transfer needs
continuous thrust to be controlled at each time. This leads to solve an optimal control problem so-called rapidly
rotating because of the “rapid” angular revolutions compared to the “slow” orbit changes.  Averaging techniques,
whose principle consists in eliminating the rapid angular oscillations, show to be well adapted to solve this kind
of optimal control problem (see [2],[3]).

In this paper, an operational tool based on averaging techniques is presented to compute minimum-time
transfers, whatever the initial and final orbits, where the thrust is assumed bounded and spacecraft mass variable,
leading to a non-constant acceleration.

The first part presents the equations of the control problem as they are implemented in the software. That
way, the user should clearly understand how the software is organized and even modify or improve some part of
it.

The second part can be considered as the user manual to run the software. The Man Machine Interface of
the tool is described, as well as all interface files of the software. Some tricks to solve convergence problems are
also given.

Finally, an application case is presented, corresponding to a GTO to GEO transfer.
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To find the optimum control law the Pontryagin’s maximum principle is applied. This leads to a Two Point
Boundary Value Problem (TPBVP) which is numerical unstable and difficult to solve directly. Two ideas, taken
from  [1] are used to solve the problem.

First, the initial problem is replaced by an averaged problem where the right-hand sides of the differential
equations are averaged over one orbital revolution. This smooths both the state and the adjoint state variables,
which leads to a numerically better-conditioned problem.

Secondly, the difficult task to start the numerical resolution with a good estimate of the unknown
parameters of the boundary value problem is solved using related but simpler problem. A simpler averaged
problems is introduced: the so-called (3 � ��') problem: minimum-energy transfer where the control vector is the
acceleration instead of the thrust and where the modulus of the acceleration is not constrained. The transfer time
is free and the final angular variable fixed.

(48$7,216�2)�027,21

We use the classical non-singular equinoctial parameters, defined as
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where / is the true longitude and Y the true anomaly. To take into account the true acceleration of the thrust, we
must add the mass P as the seventh state variable. Its evolution is given by:
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where X
r

is the thrust modulus, J �  the gravitational acceleration at sea-level, and ,VS the specific impulse of the

thruster. Let [ be the vector of the five equinoctial parameters ),,,,( ���� KKHHD and X
r

 the thrust vector

expressed in the tangential-normal orbital local frame. Then, the motion of the spacecraft is described by the
Gauss’s equations, which are:
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and:
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 and where A, B, C, D and E are defined as follows:
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Let us denote ��� XXX ,,  the thrust coordinates  (with �X the tangential direction, �X  the normal direction

and �X the direction orthogonal to the orbit plane) and ξ and ψ the steering angles which describe the direction

of the thrust vector with respect to the velocity vector and with respect to the orbital plane (see figure 1)
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The components of the thrust vector are thus:
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The spacecraft thrust is commanded continuously during the transfer in order to minimize the total transfer
time. This command must satisfy a constraint on the thrust modulus, as assumed by low-thrust transfer. The set
of admissible commands is thus characterized by:
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The minimum-time transfer problem without rendezvous in longitude can be formulated as follows:
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To solve this problem it is necessary first to scale the variables. The following scaling is used:
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where D 	  is the semi-major axis of the final orbit and P 
  the initial mass. Introducing the small parameter:
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and considering the new definition of the five-state vector ),,,,( ���� KKHHD[ =  the problem (3 	 � falls into:
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and the new set of admissible commands is:
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Let us consider now θ  as the new independant variable defined as follows:

/εθ =

and let us introduce:
Wετ =

Then, the problem 3 �  falls at the first order in ε:
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As the final scaled true lattitude 1θ  is free, the numerical resolution of the two point boundary value

problem requires the introduction of the independant variable [ ]1,0∈V with:

1θθ V=

where )(1 Vθ becomes a new state variable.

The (3 � �  control problem can thus be finally expressed as:
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Let us introduce the adjoint state vector ),,,(
1θτ SSSSS �
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=  associated to the augmented state vector
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= . The Hamiltonian of this problem can be written as :
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where 9 is the following vector:
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The minimization of the Hamiltonian relatives to X
r

 gives the optimal command:
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The adjoint state evolution is given by:
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The minimized Hamiltonian  becomes :
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The derivation of the Hamiltonian with respect to ] leads to the following bondary value problem with
consists of 14 equations :
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The state equation of τ was dropped as it can be demonstrated that :

δ
τ P−= 1

The boundary conditions are given by the initial and final state vector 0[  and 1[  (10 variables) the initial

mass )0(P  and transversality conditions on the adjoint state:

• 0)1( =�S  since the final mass is free,

• 0)1()0(
11

== θθ SS since θ � (0) and  θ � (1) are free.

Thus the 7 initial unknown variables of the boundary problem are:

)0(),0(),0( 1θ�SS �
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Let us apply the averaging method described in [1]. The problem (3 � ) defined previously :
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falls into the so-called rapidly rotating form:
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where I is 2π periodic in the fast movement τ/ε and where Uad is defined as:
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The associated averaged problem is:















==

=

∈

IUHH

;J[;

X[I
G

G;

;K

3

�	���

1

1100

1

1

0))(,()(

,.))(),.,((

))((min

)(

τ
τττ

ττ
τ

τ

using the classical averaging notation for any function f ω-periodic in its first argument:
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Notice that the averaged command depends explicitely on the rapid movement τ/ε  contrary to the averaged
state.

The )( 13 problem provides a good approximation of the initial problem (3 � ) as the error between the

averaged and exact solutions decreases with the value of ε.
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As fully detailed in [1], the method to obtain the Pontryagin’s necessary conditions of problem )( 13  is

performed in three steps :

• Step 1: Minimization of the initial Hamiltonian which leads to the optimum control law;
• Step 2 : Derivation of  the Hamiltonian with respect to [ and S�  witch leads to the state and adjoint state

equations;
• Step 3: Averaging of the differential equations.

Under certain assumptions (satisfied by the minimum time transfer for instance), it is possible to inverse the
Hamiltonian derivation and minimization (step 2 and 3). This inversion is preferable when the Hamiltonien can
be averaged analytically.

Therefore, the averaged boundary value problem which must be solved now, consists in the following
equations, derived from the previous page:
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where the average is performed relatively to / and with the same boundary conditions as in the initial problem.
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The probem �3 � ��'� is a 3D transfer where the criterium to be minimized is the energy of the transfer
which is porportional to the square of the acceleration. The control vector X

r

 is here the acceleration and with the

constraint maxXX ≤
r

, the associated problem is:
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Considering the scaling :
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Let us introduce the adjoint state vector ),( τSSS
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where 9 is the vector defined as:
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To solve this problem, we assume that the modulus of the acceleration is unconstrained. In such a case, the
minimization of the Hamiltonian relatively to X

r

 gives the optimal command:

9S[X 
 =),,(* θr

As τS  is zero (the Hamiltonian and the cost function are time-independant), the minimized Hamiltonian

becomes :
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The state equation of τ is dropped as τS  is egal to zero and as )( 1θτ is free. Therefore the resulting

boundary problem consists of  10 equations where the 5 initial unknown parameters )0(�S  are set to zero as

initial guess to solve the TPBVP.
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As for the (3 � ��') problem, the derivation of the Hamiltonian problem is performed first and the averaging
is performed using Gauss-Legendre quadrature algorithm. The unknown parameters are initialized as follow:

• the 5 value of S�  are taken from the previous �3 � ��'�,
• the initial value of S �  is taken to –1 as it can be demonstrated [1] that the optimal value is negative,
• the final longitude / � is initialized with the value / �

� ��� �
	
 obtained from the solution of (3 � ��').

The initial guess of / �  with is the independent variable must be sufficiently accurate, otherwise the
boundary value problem fail to converge. This is the reason why a “tuning parameter” N was introduced in the
software and the value of  / �  is computed as:

N

/
/

��
32

1
1

−
=

A good value of N is around 2 as the minmum-time strategy leads to less revolutions than the fuel-saving
one. For some long transfers we need to increase this value up to 4 or 8.
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The low-trust optimization tool developed by CNES, called MIPELEC, which stands for Satellite
Positioning with Electric propulsion, is presented now.

*(1(5$/�'(6&5,37,21

MIPELEC is distributed by CNES as a freeware. The package distribution includes all the sources of the
software, the executable file (mipelec.exe) and a Man Machine Interface (MMI) developed especially for this
tool (mipelec.ihm). Executable files are compiled to work on SUN Work station.

The software uses the TPBVP shooting routine developed by CNES to solve the TPBVP problem. This
subroutine is based on the NLEQ1 routine writen by U. Nowak, L. Weimann (see [4]) and the RKSUITE
routines written by R.W. Brankin,  I. Gladwell  and  L.F. Shampine. Theses two last routines were taken from
the NETLIB (http://netlib.bell-labs.com).

The computation of Hamiltonian and state equations were performed using MAPLE software. The MAPLE
source code can be furnished on request.

00,�'(6&5,37,21

The tool can be used with or without the MMI. The MMI is only a simpler way to enter the values of a
given problem. The MMI is composed of three sub-window which are the control panel, the error text message
and the data panel. The control panel includes buttons such as "run", "load", "save" and "print" which allow the
user to run the optimization tool, load, save and print data into ASCII files. The error message informs the user
of error that may occurred during the optimization process. The data panel allows the user to enter all the data
needed to run a transfer.

The executable file of the optimal tool is mipelec.exe. It can be recompiled and built with the sources
included in the distributed package. The executable file uses a unique ASCII file as input-output, named
MIPELEC, where initial orbit, final orbit and adjoint variables are written. At the end of the run, if the program
succeeds, the unknown variables of the boundary problem of the (3 � ) or (3���') problem are stored in the
MIPELEC file. This allows the user to keep the results for future use. The executable file writes also the optimal
trajectory in a file named resulP1 for the (3�) problem where the fields are defined as follow :

t (days), v (deg), a (km), ex, ey, hx, hy, pa, pex, pey, phx, phy, m (kg) , pm ,ξ (deg),ψ (deg)

an a file named resulP23D for the (3���') problem where the fields are defined as follow :

t (days), v (deg), a (km), ex, ey, hx, hy, pa, pex, pey, phx, phy, J , u/umax ,ξ (deg),ψ (deg)

 v is the longitude (number of turn), ξ and ψ are the steering angles which describe the direction of the
thrust vector and S denotes the adjoint state variables (see previous section).

The initial parameters that the user must enter to perform a run can be seen on figure 2 which is a snapshot
of the MMI screen (this screen is formally identical to the content of the MIPELEC file).

Theses values are :
• Initial orbit, expressed in standard keplerian parameters with apogee and perigee altitude,
• Final orbit,
• Characteristics of the transfer including the thrust modulus, the specific impulse and the initial mass.
• Precision parameter used for the shooting routine.
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Then the user has the choice of the problem (3� or 3��') and can run the software with or without
automatic mode.

• When the automatic mode is selected for the (3�) problem the software try to solve first the problem
(3 � ��') and then the problem (3 � ). As, stated before, in this case there is a “tuning parameter”, named
“Final longitude tuning parameter” which provides the user with different choices for initializing the
final longitude of the (3 � ) problem.

• When the automatic mode is not selected, the user must enter initial guess for the unknown values of the
concerned boundary problem as defined in the previous section.

The non-automatic mode screen of the MMI is represented in the following figure.
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In most cases, the software converges when the automatic mode is selected.

In automatic mode, the (3 � ��')�may sometime fail if there is a big change in the inclination. In this case,
the user shall try to solve a related but simpler problem. For instance, the same transfer with a smaller variation
in inclination lead to a convergence of the��3 � ��') problem.

Most of unsuccessful runs of the software come form the (3 � ) problem. If the (3 � ) problem fail the user may
change the final longitude estimate with the tuning parameter. Usually two or three attempts are sufficient to find
a good estimate. If the (3 � ) problem persists to fail, there is no other solution that to try a related simpler
problem.

When the user fail to solve his initial problem, but succeeds to solve a related simpler problem, the strategy
is to run several times the software in non-automatic mode where the initial guess of the unknown parameters are
taken from the previous successful run. That way the user can start an “ homotopic” process to draw nearer step
by step to his initial problem.
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The MMI allows to perform rapidly these several runs without any data acquisition from the user, as it loads
automatically adjoint variables from a previous successful run.

With some little practice, most of minimum-time transfers are rapidly solved.

$33/,&$7,21�72�*(267$7,21$5<�0,66,21

To give an example of a software run, let us consider the transfer between the standard Ariane4
Geostationary Transfer Orbit – apogee=36000 km, perigee=200 km, i0=7°- to the Geostationary Orbit –
altitude=36000 km, e1=i1=0. The thuster is supposed to be the SPT100 developed by SEP company with F=0.35
N and Isp=2000 s. The initial mass of the satellite is supposed to be 2000 kg.

The minimum-time strategy leads to a transfer of 138.5 days with 191 revolutions and 213.5 kg of fuel.
The time evolution of the averaged trajectory is presented in Fig. 4 and the angular evolution of the

command in Fig. 5. The strategy consists in raising the apogee higher than the geosynchronous orbit

)LJXUH����7UDMHFWRU\�HYROXWLRQ
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In order to use the software with success for a particular analysis, the assumptions on which equations are
based must be clearly understood.

The assumptions used are as follows:

• This tool leads to find optimal minimum-time transfer with bounded thrust and variable spacecraft mass.
• The value of the thrust modulus should not exceed, let us say, 1.10-3 m/s2. Not only the error between

the averaged and exact solution increases with the value of the thrust, but also, in most cases, the
software fail to converge for higher acceleration values.

• The equations of motion are modeled under the hypothesis of one central body without taking into
account any perturbation force except the low-trust one.

• The thrust direction is not constrained.
• There is no final rendezvous in longitude.
• No shadowing or power duty-cycle is considered.

&21&/86,21

This paper presents a tool for solving minimum-time low-thrust transfers, which is distributed by CNES as
freeware. This software, based on averaging techniques in optimal control, proved to be a powerful tool to solve
any low-thrust transfer and find optimal solution. The possibility to solve a transfer with automatic initialization
of adjoint variables leads to find the optimal solution of the problem, even when its structure is unknown.

This low-thrust optimization tool is, moreover, rather flexible since recent studies have allowed several
generalizations to be taken into account : J2-J6 Earth zonal effect and Moon-Solar potential, Earth Shadowing
constraints, thrust direction constraint, rendezvous in longitude, fuel-saving strategy.



17

5()(5(1&(6

1. Geffroy, S. Epenoy, R “Optimal low-thrust transfers with constraints-generalization of averaging
tehcnics ”, Acta Astronautica��Vol. 41, No. 3, 1997

2. Kluever, C.A. and Oleson, S.R. "Direct approach for computing near-optimal low-thrust Earth-orbit
transfers". Journal of Spacecraft and Rockets, Vol 35 Nov, 1998.

3. Edelbaum, T.N., Sackett, L.L. and Malchow, H.L., "Optimal low-thrust geocentric transfer", AIAA 73-
1074, AIAA 10th Electric Propulsion Conference, Lake Tatiol, NE, 1973.

4 U. Nowak, L. Weimann. "A Family of Newton Codes for Systems of Highly Nonlinear Equations -
Algorithm, Implementation, Application", ZIB, Technical Report TR 90-10 (December 1990)


