

DEBRISK software user's manual LOS mode

	NAME and ACRONYM	DATE and SIGNATURE
Written by	THALES/RTECH DEV Team	21/03/2025 Nicola Nahale
Verified by	Aurélie BELLUCCI CNES/DTN/MSO/DVS	21/03/2025
Approved by	Project Manager Grégoire LAUR DOA/SME/LOS	21/03/2025

DEBRISK software user's manual LOS mode

	NAME and ACRONYM	DATE and SIGNATURE
Written during the maintenance by	THALES/RTECH DEV Team	21/03/2025 Nicola Nahale
Verified by	Cyril PROCH (THALES SERVICES NUMERIQUES)	21/03/2025
Approved by	Project Manager Nicola NATALE (THALES SERVICES NUMERIQUES)	21/03/2025 Nicola Nahale

Distribution list

NAME	ACRONYM
BELLUCCI Aurélie	DTN/MSO/DVS
MONTAGNON Etienne	DSO/MSO/DVS
ANNALORO Julien	DTN/TVO/PR
GALERA Stéphane	DTN/TVO/PR
CHARRON Yann	DTN/TVO/PR
LAUR Grégoire	DOA/SME/LOS
ElJed Olfa	DOA/SME/LOS
ALCARIA Cloe	DTN/MSO/MDV
CARRETIE Laura	DTN/QE/NEO
ZEMOURA Melissa	DTN/STS/SPC
FARAGO François	DTN/STS/SPC
MARTINEZ TORIO Alexandra	DTS/LOS

SUMMARY OF CHANGES

Issue	Revision	Date	Purpose of the modification
			Original reference: PR-DEBR-MU-110930-0463-RTECH
			Initial version written by Fabien GUICHARD (RTECH).
1	0	03/11/2011	First revision
1	1	08/11/2011	Update following remarks from CNES
1	2	09/11/2011	Material properties added and conductivity deleted
1	3	14/12/2011	Review item discrepancies taken into account
1	4	15/12/2011	"Import from DAS" section added
2	0	20/07/2012	DEBRISK V2.0
2	1	25/07/2012	Modification following DEBRISK.103 action
2	2	16/08/2012	Further information on SIRIUS ephemeris data files and extra expert settings added
2	3	22/08/2012	FA 493, 495 and v7 proofreading sheet taken into account
2	4	10/09/2012	Modifications for Debrisk v2.05.00
2	5	05/12/2012	CNES remarks made during the meeting on documentation taken into account
2	6	11/07/2013	FA 534 and DM 611 and 617 taken into account

Date

Version

DBK-MU-LOG-0268-THA 21/03/2025 2.22 Page: 5/120

			New reference: DBK-MU-LOG-0258-CNES
1	0	13/01/2014	DM 685 Default parameter values and document management by CNES taken into account
2	0	28/02/2014	Due to the change of contract, this version of the document follows reference document DBK-MU-LOG-0258-CNES version 01.00". DM 686: nomenclature changed from "expert mode" to "scientific mode".
2	1	25/04/2014	CNES remarks taken into account (CNES_relecture_MUscientifique_GMV_24032014): MM-3: \$7.6.2.3, clarification regarding the box. MM-4: \$7.5.1.1, clarification regarding the DAS file. DM-713: \$7.6.1.1, \$7.4.1 use of the "—userMaterials" option
2	2	18/11/2014	FA-727: Use of a UTF-8 compatible editor Additional information on the way to custom the JVM memory. Section 7.10 (FEP-3 FEPS_DEBRISK_pk_man_fa_dd_mm_01_02.xls) Additional terms added in section 3 (project action) DM-752: Modification in the ergonomics of DEBRISK GUI
2	3	09/12/2014	Corrections due to FEPS raised by CNES during PKPV
2	4	24/02/2015	Added a warning to indicate that all the exported files (Electra, Google Eart, CSV) are done using the UTF-8 encoding. Clarification of the use of the quantity attribute of a fragment for the computation of the thermal_mass and the casualty_area.
2	5	13/04/2015	Corrections taking into account CNES remarks raised after V02.07.01 delivery (DBK-MU-LOG-0258-GMV_02_04-RemPO) FA-810: § 7.5.1.5, § 8.2.1.3, clarifications on the logic followed for defining the colours of "demise altitude" and "impact energy".

DEBRISK

2	6	07/05/2015	FA-830: § 6.3, § 7.1, correction of minimum Java Virtual Machine version.
2	7	12/12/2015	 DM-827 : Prise en compte de la STB du logiciel DEBRISK ed3 rév9 et autres évolutions du logiciel DEBRISK Section 7.2 screenshot update to take into account the updates in the GUI. Section 7.4.1: Addition of the –f flag to generate DML files in batch mode. Section 7.5.1: Added the operation of the new "Import TLE" button (DEBRISK_675).
			Section 7.5.1, section 8.2.1.3 : Added the new "Global Casualty Area" widget. Section 7.5.1: Added the information about the display of automatically modified objects (DEBRISK_545 and DEBRISK_546).
		8 15/04/2016	DM-833: Modification of section 7.6.2 to explain the computation of dimensions.
2	0		FA-872: Modification of section 8.2 to describe the modifications in the csv header.
	8		DM-846 : Modification of section 5 to remove some resources that are not needed anymore.
			Creation of section 7.5.1.5 Result Panel to detail the contents of the result panel after the execution.

			DM-891: Modification of section 7.4.1 to include the new expert parameters to define the satellite ablation, ballast parameters and objet file creation.
			Modification of section 7.5.1.3 to include the satellite mass decomposition in the information area.
			Modification of section 7.5.1.3 to include the aerodynamic mass field in the satellite definition dialog and its definition.
2	9	27/04/2017	Modification of section 7.5.1.3 to include the new functionality of accepting the dimensions of an object even if they are incoherent.
			DM-933: Modification of section 7.5.1.3 to describe the new algorithm of dimension input and to indicate the possible differences in two similar objects defined using different methods.
			Modification of section 7.5.1.3 and 7.6.2 to indicate the rounding of dimensions with too many significant digits.
			Modification of section 7.6.2.5 to include the new table with the significant digits per dimension.
		10 07/07/2017	Implementation of CNES document corrections after review of version 2.9.
2	10		FA-991 update of error messages related to the definition of the fragments. Section 9.4.2
			Modified the section 7.5.1.3 to include the information about the ballast mass and the aerodynamic mass of the satellite.
2	11	11 08/12/2017	Added section 7.5.1.4 to describe the new simulation parameters tab.
			Updated images to show the new simulation parameters section.
2	12	12 05/12/2018	Modification of section 7.5.1.3: addition of statement that the initial aerodynamic mass contains the mass of the solar panels. Change of screenshot to display the updated ones (with according correction of label for total mass with solar panels). Update of the screenshot of the right numerical values displayed in the edition of the spacecraft.
			Name of the frame displayed in IHM: modification of section 7.5.1.2, modification of the overall screenshots.
			Modification of section 8.2: addition of quantity, initial Ccond, final Ccond parameters in CSV file. Update list of parameters in TecPlot.

			Modification of section 5 to include the complex shapes and the interpolator files (DM-1046).
			Modification of section 6.2 to include the new versions of Windows.
			Modification of section 7.5.1.3 to include de new complex shapes geometric parameters (DM-1048).
2	13	15/02/2019	Modification of section 7.5.1.4 to include the information about the parameter's visibility depending of the other parameters value, and update of the parameters panels to include the new parameters (DM-1046).
			Added section 7.6.2.5 and 7.6.2.6 to include the definition of the complex shapes and their constraints (DM-1046).
			Modification of section 7.15 to include the errors related to the complex shapes (DM-1046).
			Modification of section 8.2 to include the information about the modifications of the output files (DM-1046, DM-1056, DM-1069).
			DM-1082: Modified section 7.5.1.7 to update the graphic plots.
2	14	29/11/2019	DM-1085: Modified the section 9.2 to modify the parameter ReferenceArea in ReferenceAeroAera and to add the new parameters ReferenceThermalArea and Qcond.
			DM-1098: Modified the sections 6.3 and 7.1 to indicate that Java 1.8 is the minimum version to use for the virtual machine.
			DM 1101 : Added section 7.7 "Heat flow" to explain that the absorbed radiation flux is null.
		20/01/2021	Section 7.7 transformed into "Survivability parameter". The section "Normal shutdown" becomes section 7.8
	15		DM-1427: Figures 19 (Adding a root object window), 49 (Box tumbling) and 50 (Flat plate tumbling) updated so only the accurate rotation arrows are displayed.
2	15	20/01/2021	DM-1446 : Modified section 7.5.1.5 to add the fact that :
			- there is one Materials tab per simulation (so the Materials tab are
			 there are some materials defined by default in the material tab, that are displayed in pur"le, named ""xx DEBRISK", and that cannot be modified, there are two buttons in"this tab ("sav" mate"ials" and "loa" materials"). Screenshot fig36 changed to show the list of purple materials.
			Modified section 7.6.1.2 to add the default materials are displayed in pur"le, named ""xx DEBRISK" and cannot be modified.

Ċ
cnes

			 Modified section 7.6.1.3 to add the fact that the existing"materials ""xx DEBRISK" can be duplicated, but the copy cannot be reg"stered as ""xx DEBRISK", and the oxidation properties are not be duplicated. DM-1462 : section 7.5.1.3 modified to add spheres as possible satellite shapes. DM-1463 : section 9.2 modified to add the fact that the name, creation date, version and mode are written at the beginning of the csv and Tecplot files. DM-1465 : section 7.4.1 modified to delete the ELECTRA file from the list of files that each be Connected.
			section 7.5.1.1 modified to remove the ElectraFileException section 9.1 modified to remove the reference to the creation of an
			ELECTRA file. section 9.2 modified to remove any reference to the ELECTRA file. section 9.3.1 modified to remove any reference to the ELECTRA file. This section no longer is centered on the creation of an ELECTRA file, but on the creation of a simulation, and on the exportation of the result files.
			DM-1460 : section 7.6.2.5.2 modified to change the condition on h.
			Added section 7.8 to include the oxidation flow equations.
			DMI-14/4: Updated object images in section 7.7 "Shape of objects".
			DM-1485: Addition of section 7.7.1.5 to describe the new hemispherical cylinder.
2	16	26/11/2021	DM-1559: Removed section 7.7.1.7 containing the significant digits for object dimensions.
			Modified section 7.6.1.1 to remove the paragraph about the default location of the userMaterials file that is not applicable to the LOS mode.
			Modified section 7.5.1.1 to update the description of the cross section area
2	17	11/02/2022	result and the associated screenshot.
			Modified section 7.5.1.6 to improve the description of the save action.
			Added section 9.5 with the 3D view configuration description.

Date

2	18	02/11/2022	DM-1626: Added section 7.5.1.5.1 to explain the loading of a material list in the IHM. DM-1627: Modified section 7.5.1.1 do add the new "Save As" menu. DM-1646: Modified section 10.2 to add the new "azimuth" column to the Tecplot file definition. DM-1659: Modified section 10.2 to remove the "spacecraftMass" column from the Tecplot file definition.
2	19	22/05/2023	 DM-1652: Modification of the fragmentation validity range. Update of screenshots to reflect the change of the IHM look & feel. Modification of section 7.5.1.1 to include the Help menu description. Modification of section 7.5.1.2 to remove the fragmentation altitude. Modification of section 7.5.1.4 to include the update of simulation parameters section. DM-1670: Modification of sections 7.5.1.2, 7.5.1.3 and 7.6.1.3 to include the information about the warning message for incoherences in the input values. DM-1689: Modification of section 7.4.1 to include the generation of the Cb/Mach file. DM-1692: Modification of section 7.5.1.6 to include the definition of the weighted casualty area. DM-1693: Addition of section 7.5.1.8 to describe the message area. DM-1695: Modification of section 9.5.3 to indicate how to deactivate the 3D view manually.

Date

2	20	06/11/2023	 FA-1723 correction implemented in section §7.7.1.6. DM-1725 Home page figure updated in §7.5.1. FA-1722 Correction dimmensions maximales tube §9.4.2. DM-1733 Added the information about the licence in §7.5.1.1
			DM-1724 Update of section §7.6.1.3 to take into account that the emissivity shall be in the range [0,1].
2	21	06/12/2024	LOS_FT-28: Updated images and description in section 7.5.1.2 "Scenario area". LOS_FT_22: Removal of constant drag coefficient, and addition of constant ballistics coefficient
2	22	21/03/2025	Minor corrections/updates in the document

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK	BEBRISK	Date	21/03/2025	
			Version	2.22	Page: 12/120

Contents

1	Ir	ntroduction	1	
2	A	pplicable a	nd reference documents	
	2.1	Applicabl	e documents	
	2.2	Reference	e documents	
3	Т	erms, defin	itions and abbreviations	
4	C	onventions		
	4.1	Symbols.		
	4.2	Stylistic c	onventions	
	4.3	Initial cor	nditions of simulation models	
	4.4	Purpose o	of the software	
5	E	xternal viev	w of the software	
6	0	perational	environment	
	6.1	General		
	6.2	Hardware	e configuration	
	6.3	Software	configuration	25
7	0	perating M	anual	
	7.1	Configura	ation and initialisation	
	7.2	Installatio	on of DEBRISK	
	7.3	Uninstalla	ation	
	7.4	Mode sele	ection and control	
	7.	.4.1 The	e console mode	
	7.	.4.2 The	e IHM mode	
	7.	.4.3 Log	g management	
	7.5	Normal o	peration	
	7.	.5.1 Gra	aphic interface	
		7.5.1.1	Menu	
		7.5.1.2	Scenario area	
		7.5.1.3	Objects tab	
		7.5.1.4	Simulation Parameters tab	58
		7.5.1.5	Materials tab	59
		7.5.1.6	Result Panel	61
		7.5.1.7	Viewing area	64
		7.5.1.8	Message zone	
	7.6	Materials		
		7.6.1.1	Materials file	
		7.6.1.2	Integrated materials	
		7.6.1.3	Materials created by the user	69
	7.7	Shape of o	objects	72
		7.7.1.1	Sphere	73
		7.7.1.2	Cylinder	75
		7.7.1.3	Box	77
		7.7.1.4	Flat plate	
		7.7.1.5	Hemispherical cylinder	

DEBRISK

		7.7.1.6	Complex shape	
	7.8	Heat fl	0W	
	7.9	Oxidat	ion flows	
	7.10	Sur	vivability parameter	
	7.11	Glo	bal results	
	7.1	1.1	Total casualty area	86
	7.1	1.2	Total impact mass	86
	7.1	1.3	Total number of processed objects	87
	7.1	1.4	Total impacting number of fragments	87
	7.1	1.5	Total survivability	87
	7.1	1.6	Fotal wall time	
	7.1	1.7	Гоtal CPU time	
	7.1	1.8	Fragmentation altitude	
	7.12	Nor	mal shutdown	
8	Err	or situ	ation	
	8.1	Recov	ery procedures	
	8.2	Java Vi	rtual Machine (JVM) memory management	
9	Ref	erence	e manual	92
	9.1	Introd	uction	92
	9.2	Definit	ions and operation of the monitor	92
	9.3	Plate a	blation	92
	9.4	Error	nessages	93
	9.4	.1	Error messages when entering the initial conditions	93
	9.4	.2	Error messages when creating an object	93
	9.4	.3	Error messages when creating a new material	
	9.4	.4	Error messages when reading an input file	
	9.4	.5	Operation error messages	
	9.5	3D Vie	w configuration	
	9.6			
10	Tut	torial		
	10.1	Inti	oduction	
	10.2	Sta	rting up	
	10.	2.1	Scenario area	
		10.2.1	1 Object tab	
		10.2.1	2 Materials tab	
		10.2.1	3 Viewing area	
	10.3	Usi	ng the software for a typical task	
	10.	3.1	Creation of a simulation and result files	115

DEBRISK

TABLE OF FIGURES

Figure 1 Opening the wizard.	28
Figure 2 Selecting the installation directory.	
Figure 3 Installation in progress	29
Figure 4 Selecting a shortcut if required	29
Figure 5 End of the installation	
Figure 6 Uninstallation window	31
Figure 7 Uninstallation completed	31
Figure 8 Home page	34
Figure 9 Menu	35
Figure 10: About dialog	
Figure 11: Licence dialog.	37
Figure 12 Scenario area	
Figure 13 orbit containing the incoherences	42
Figure 14 Object tab	44
Figure 15: Total casualty area after a simulation reset	45
Figure 16: Negative ballast mass	45
Figure 17: Total casualty area value after an execution.	45
Figure 18 Adding a root object window	46
Figure 19 Adding an object window.	46
Figure 20 : Linear model for conductance	48
Figure 21 : Polynomial model for conductance	49

Page: 15/120

Figure 22 Adding solar panels	50
Figure 23 Incoherence dimensions dialog	50
Figure 24: confirmation dialog	51
Figure 25 Display of an incoherent object	51
Figure 26: Relationship menu	52
Figure 27 Display of read only dimensions	54
Figure 28 Information table	54
Figure 29 Object edit interface.	55
Figure 30 Editing an object directly in the table	56
Figure 31 Wrong value while editing an object directly in the table	56
Figure 32: Dialog to inform the user about the automatic modification of the object properties	57
Figure 33: Automatically modified object in input panel	57
Figure 34: Automatically modified object in result panel	57
Figure 35: Simulations Parameters tab	58
Figure 36 Unknown materials warning pop-up	59
Figure 37 Materials tab Panel	60
Figure 38 Materials tab thermal properties graph	60
Figure 39 Load materials confirmation dialog	61
Figure 40: Selection of missing material properties	61
Figure 41 Results table	62
Figure 42 Viewing area on the right	64
Figure 43 Creation of custom plot	65
Figure 44 Invert plot	65

Page: 16/120

Figure 45 Simulation viewed in Google Earth67	
Figure 46: Message area	
Figure 47 Adding a customised material70	
Figure 48: Confirmation dialog for invalid materials70	
Figure 49 Entry of a linear evaluation	
Figure 50 Entry of a polynomial71	
Figure 51 Spheres defined using different methods, obtaining different results	
Figure 52 Hollow sphere random tumbling	
Figure 53 Solid sphere random tumbling74	
Figure 54 Hollow cylinder random tumbling75	
Figure 55 Solid cylinder random tumbling76	
Figure 56 Box tumbling77	
Figure 57 Flat plate tumbling	
Figure 58 Hollow hemispherical cylinder random tumbling79	
Figure 59 Complex conical shape tumbling	
Figure 60 Complex conical shape profile	
Figure 61 Complex spherical shape tumbling	
Figure 62 Complex spherical shape profile	
Figure 63 Closing the software	
Figure 64 Simulation not saved warning pop-up	
Figure 65 Memory monitor91	
Figure 66 Error message	
Figure 67 Entry of a user-defined material	

Figure 68 Menu106
Figure 69 Entry conditions
Figure 70 Creating an object111
Figure 71 Swap objects table view114
Figure 72: Total casualty area value after an execution
Figure 73 Menu115
Figure 74 Entry conditions116
Figure 75 Creating a spacecraft117
Figure 76 Creating a child object118
Figure 77 Results and viewing area119
Figure 78 Export file pop-up119
Figure 79 Importing a file encoded following the UTF-8 format in Excel

cnes	CNES		Ref.	DBK-MU-LOG-0268-THA	
	DEBRISK	Date	21/03/2025		
		BEBRISK	Version 2.22 Page	Page: 18/120	

1 Introduction

This document is a manual whose purpose is to give an exhaustive introduction to the functions available to the DEBRISK user performing simulations of the ablation of debris from a spacecraft after it has been destroyed upon re-entry into the atmosphere.

DEBRISK has been created by RTECH under a development contract for CNES. It is now in the maintenance phase by GMV, under contract for CNES.

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK	Date	21/03/2025		
		DEBRISK	Version 2.22	Page: 19/120	

2 Applicable and reference documents

2.1 Applicable documents

ID	Document	Reference	Issue	Date
		DBK CT GDEC 000 CNES	5.0	0/10/2024
ADI	Technical Requirement Specifications	DBK-CI-SPEC-009-CNES	5.6	9/10/2024

2.2 Reference documents

ID	Document	Reference	Issue	Date

3 Terms, definitions and abbreviations

Terms	Definition
Spacecraft	A spacecraft is the parent object of all other user-defined objects. It comprises a (cylindrical, spherical or parallelepiped) main body, and one or more solar panels if it is needed. When re-entering the atmosphere at the end of its life, the spacecraft first loses its solar panels, and then splits into one or more fragments at a given altitude.
Child	A child is a fragment within another object. By definition, a fragment is a child, either of another fragment, or of the spacecraft. An object may have several children. Children are released into the atmosphere where the parent ceases to exist.
Thermal mass	The thermal mass is the mass of an object, not including the mass of its children, if any.
Object	An object may be a spacecraft or a fragment.
Fragment	A fragment is a part of the spacecraft, as defined by its shape, its dimensions and its material. A fragment only exists after fragmentation of the spacecraft.
Aerodynamic mass	The aerodynamic mass is the mass of an object, including the mass of all generations of children, if any.
Downrange (IHM, .dat file)	Length of the projection of object's trajectory on the Earth's surface (from the re-entry point of the space craft)
Local downrange (dat file)	Downrange computed from the moment the child is born.
Downrange shortest	Minimum distance between the initial point of the SC trajectory's projection on the Earth's surface and the impact point.

	CNES	Ref.	DBK-MU-LOG-0268-THA		
cnes	DEBRISK	DEBRISK	Date	21/03/2025	
			Version	2.22	Page: 21/120

4 Conventions

4.1 Symbols

A red triangle indicates an important remark.

4.2 Stylistic conventions

Stylistic conventions are used to highlight elements in the DEBRISK program.

- *Button* « Button » "Button" references to software buttons are between quotation marks, French quotation marks or in italics.
- <u>Important</u> words are underlined.
- Command lines are written using the Courier font.

4.3 Initial conditions of simulation models

- An object is considered destroyed when its kinetic energy is below 14 J.
- The object temperature at birth, i.e. the initial simulation temperature, is 300 K for all objects.
- The atmosphere model used is the US 76 model.
- A central force model is used as the gravity model.

	CNES	CNES	Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		BEBRISK	Version	2.22	Page: 22/120	

4.4 Purpose of the software

In 2008, the French Parliament voted the Space Operations Act (Loi sur les Opérations Spatiales, LOS), whose purpose is to set up a national system for authorisation and control of space operations under French jurisdiction. This law was followed by decrees and technical regulations which require that satellites should be subjected to a hazards study including an analysis of survivability on reentry. This analysis can be carried out for uncontrolled or controlled re-entry at end of life, and also for special launch failure conditions.

CNES has been appointed by the State to certify the hazards studies. CNES must therefore acquire the means necessary for this certification. These means are put at the disposal of manufacturers and operators in the space sector bound by the LOS and are used for certification in all cases.

The DEBRISK software is part of these means and has been developed by CNES since 2009. The development of the DEBRISK tool is due to the necessity for CNES to have independent and justified calculation models, and to put at the disposal of the engineers in charge of the risk calculations or of their verification a qualified tool based on validated models, whose source code is fully mastered by CNES.

DEBRISK is intended to be the CNES tool used to conduct the analyses of the survivability of fragments originating in spacecraft on re-entry into the atmosphere.

The DEBRISK software is a tool for analysis of the ablation of debris from a spacecraft after its destruction on re-entry into the atmosphere. It is based on an object-oriented approach, in which the space object is represented by a set of interconnected basic and complex geometries. A structure of the parent-child type is used to define the relations between these different objects. Each object is defined by its shape, its dimensions, its mass and its material.

The user provides the initial kinematic conditions of the entry of the space object, and the software calculates the trajectory of the fragments and the possible ablation along this trajectory. The software gives a list of surviving objects and their characteristics on landing.

DEBRISK allows the creation of one spacecraft at a time, but of as many child fragments as required.

DEBRISK first calculates the trajectory and the kinematic conditions of the vehicle as a whole between the starting altitude specified by the user and the fragmentation altitude (between 100m and 200 km), considering a loss of solar power plant at 95 km. It then calculates the trajectory (between the fragmentation altitude and the ground) and the possible ablation of the fragments from the spacecraft. These fragments are defined by the user and can be matched as parent/child. Finally, DEBRISK calculates the casualty area of the surviving fragments.

To do this, the code solves the fundamental mechanics equation along the descent trajectory. Aerodynamic forces are estimated, for each flight domain, for each object. The heat fluxes encountered by the object for each flight domain are calculated, along with the increase in the temperature of the object. When the temperature of the object has reached the melt temperature, the object is ablated, and the changes in its dimensions and mass are taken into account when calculating the trajectory. The purpose of the DEBRISK tool is to calculate the surviving fragments of a spacecraft during its re-entry into the Earth's atmosphere. It makes it possible to provide this list of fragments to the ELECTRA tool and to calculate the associated casualty area.

The main functions of the DEBRISK software are:

- the calculation of the aerodynamic coefficients of the object,
- the calculation of the trajectory of an object in free fall towards the Earth,
- the calculation of the aerothermodynamic fluxes,
- the calculation of the temperature of the object,
- the calculation of the ablation of the object.

5 External view of the software

The following folders and files (between brackets) created by the DEBRISK installer are required for DEBRISK to operate:

- 3DModels: Containing the 3D models used for GoogleEarth.
- Database
- Images: Containing the images used by the software-
- Orekit-data: Containing the DE-406-ephemerides
- XSD files for the verification of the XML file structure.
- PDF files containing the user manuals.

6 Operational environment

6.1 General

The DEBRISK software requires the minimal software and hardware configuration described below.

6.2 Hardware configuration

It must be possible to execute the DEBRISK software on stations with:

- A monitor with minimum resolution of 1280x1024.
- A graphics card with minimum resolution of 1280x1024.
- An amount of RAM of 2 gigabytes minimum (see note below).
- 100 megabyte of disk space minimum.

Note: After a simulation including dozens of objects, it is recommended not to move on to a 2^{nd} simulation without first closing the tab of the 1st simulation, so as not to take up too much memory, with consequences for the execution time.

6.3 Software configuration

The stations can be equipped with the following operating systems:

- Windows 7, 8, 10
- Linux REDHAT (Red Hat Enterprise Linux Desktop)
- Linux SUSE (OpenSUSE)

The operation of DEBRISK requires the installation of a JAVA virtual machine version 1.8 minimum.

The DEBRISK outputs are compatible with:

- Tecplot version 8 and later,
- Microsoft Excel 97 and later,
- Google Earth 5.0 and later,
- ELECTRA V4.3 and later.

In addition, Debrisk requires a recent PDF reader (e.g. Adobe Reader available on <u>http://get.adobe.com/fr/reader/</u>) in order to read this manual when using the DEBRISK "help" function (accessible by pressing "F1").

Please, note that the exported files by DEBRISK will be encoded following the UTF-8 format. See 10.3 for more information on this topic

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		BEBRISK	Version	2.22	Page: 27/120	

7 Operating Manual

7.1 Configuration and initialisation

The DEBRISK installer comes in the form of a wizard proposing a limited and intuitive number of options.

The installer specifies whether the Java version installed is incompatible (1.8 minimum). However, if Java is not installed at all, the installer does not start. Moreover, if the version installed is too old, the following message is displayed (found on JAVA version 1.4):

In this case, install Java version 1.8 and restart the installer.

7.2 Installation of DEBRISK

The installation is carried out by opening the autoexec installation archive. An installation wizard is opened and proposes to modify the default installation directory. DEBRISK will then be created at the location specified by the user, with an executable ".jar" file inside and all the files necessary to launch DEBRISK.

All these files must remain in this installation directory, as they are used by the software to perform the simulations.

The default directory for the input/output files is the "<installation_directory>/DEBRISK/Database" directory.

	CNES	BEBRISK	Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes			Version	2.22	Page: 28/120	

Figure 1 Opening the wizard.

👫 IzPack - Installation of Debrisk - 🗆 🗙	
Select the installation path: C: Program Files Debrisk Browse	Save Save in: OneDrive - gmv.com Attachments Desktop Desktop Desktop This PC Documents Recordings
(Made with IzPack - http://izpack.org/)	Folder name: C:\Users\ijjct\OneDrive - gmv.com Save Network Files of type: All Files Cancel

Figure 2 Selecting the installation directory.

CNES DEBRISK	Ref.	DBK-MU-LOG-0268-THA				
	DEBRISK	DEBRISK	Date	21/03/2025		
			Version	2.22	Page: 29/120	

🔐 IzPack - Installation of Debrisk	-		×
A Park installation progress			
C:\Program Files\Debrisk\debrisk.jar			
Debrisk			
Overall installation progress:			
1/2			
(Made with IzPack - http://izpack.org/)	_		
I Previous III	Next	🛛 😢 Qu	it

Figure 3 Installation in progress

You can choose to create a shortcut on the desktop:

👬 IzPack - Installation of Debrisk		- 🗆	×
 Setup Shortcuts Create shortcuts in the Start-Menu Create additional shortcuts on the desktop 			
Select a Program Group for the Shortcuts: Accessibility Accessories ActiveState ActiveTcl 8.4.19.6 Administrative Tools Debrisk FreeCAD 0.20 grepWin Maintenance Python 3.11 Startup System Tools	~	create shortcut for:	
Debrisk		Default	
(Made with IzPack - http://izpack.org/)	🔶 Previc	us 👘 Next 😢 🕻	Quit

Figure 4 Selecting a shortcut if required.

The "Default" button is used to reset the default value of the group of shortcuts (i.e. "Debrisk"), if this had been modified by mistake.

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK	DEBBISK	Date	21/03/2025	
cnes		REBBISK	Version	2.22	Page: 30/120
	🞳 IzPack - Installation of	Debrisk	-		
		 Installation has completed successfully. An uninstaller program has been created in: C: \Program Files\Debrisk\Uninstaller 			
		Generate an automatic installation script	l		
	(Made with IzPack - http://i	zpack.org/)		Done	

Figure 5 End of the installation

The "Generate an automatic installation script" button is used to generate a script to be used for an identical installation (useful in case of deployment in a "standard" environment).

When clicking on this button, the installer proposes to save a file which can then be copied from station to station to reproduce the same installation. The installation can then be launched as follows in command line:

« java -jar name_of_Debrisk_installer path_of_script ».

The installation then takes place in silent mode with the same user settings as for the installation which generated this script.

7.3 Uninstallation

To uninstall DEBRISK, execute the "DEBRISK_INSTALL/Uninstaller/uninstaller.jar" file, where "DEBRISK_INSTALL" is the DEBRISK installation file.

The following window is displayed:

	CNES	DEBRISK	Ref.	268-THA	
cnes	DEBRISK		Version	2.22	Page: 31/120
	*	IzPack - Uninst — 🗆	×		
		Force the deletion of C: Program File	ion! es\Debrisk		
		🗊 Uninstall	🔀 Quit		

Figure 6 Uninstallation window

The "Force the deletion of …" option is used for the complete deletion of the Debrisk file (including the saved simulations and exports, the user material file or any other file which might be stored there).

Clicking on the "Uninstall" button launches the uninstallation. Click on "Quit" to close the window.

Figure 7 Uninstallation completed

7.4 Mode selection and control

The DEBRISK software can be used in different modes:

- Standard mode: graphic interface (see chapter 7.5)
- Console mode

7.4.1 The console mode

The Debrisk software can be launched using a command line. Execution takes place in batch.

The syntax of the command line is as follows:

java -jar <u>debrisk.jar</u> --input xml_input_file_path --output no_extension_output_files_generic_path [-params] [--debug]

<u>params</u> is a combination of one or more value(s) among:

- -r : creation of a <u>CSV report</u>
- -t : creation of a <u>TECPLOT</u> file
- -k : creation of a <u>KML file</u>

-x: creation of an <u>XML file</u>, if the *Create Cb vs Mach file* option is selected the "CbMach" CSV file will be generated with in the same location.

-f : creation of <u>DML file</u> (Flat XML)

For example, the line below:

"java -jar <u>debrisk.jar</u> —input /home/<u>xxx/Debrisk</u>/Database/case001.<u>xml</u> —output /home/<u>xxx/Debrisk</u>/Output/test1 —<u>rtkx</u>"

reads and loads the /home/<u>xxx/Debrisk</u>/Database/case001.<u>xml</u> file and creates the following files:

/home/<u>xxx</u>/<u>Debrisk</u>/Output/test1.<u>csv</u>

/home/xxx/Debrisk/Output/test1.dat

/home/xxx/Debrisk/Output/test1.kml

/home/xxx/Debrisk/Output/test1.xml

 $/home/\underline{xxx}/\underline{Debrisk}/Output/CbMach_test1.\underline{xml}$

"-<u>rtkx</u>" here is equivalent to "-r -t -k -x"

The extra "--debug" optional parameter is used to display more information in the logs (see §7.4.2).

The extra "--installDir <DIR>" optional parameter is used to specify the installation directory (<DIR> must here be replaced by the full path of the installation directory selected). By default, it is in the same location as the executable program.

The extra "--userMaterials <FILE>" optional parameter is used to specify the path of the material file (<FILE> must here be replaced by the path of the material file selected) to be used instead of the materials properties defined in the configuration file.

The "--help" command displays the notice of the command line syntaxes mentioned above.

7.4.2 The IHM mode

Apart from the desktop icon, the Debrisk software can be launched in IHM mode using a command line from the installation directory. The syntax of the command line is as follows:

java -jar debrisk.jar [--installDir <DIR>] [--userMaterials <FILE>] [--debug]

The "--installDir <DIR>" is an optional parameter used to specify the installation directory (<DIR> must here be replaced by the full path of the installation directory selected). By default, it is in the same location as the executable program.

The "--userMaterials <FILE>" is an optional parameter used to specify the path of the material file (<FILE> must here be replaced by the path of the material file selected) to be used instead of the materials properties defined in the configuration file.

The "--debug" is an optional parameter used to display more information in the logs (see §7.4.3).

7.4.3 Log management

All error messages sent by the application to the user (exception, confirmation, warning, information, etc.) are archived in the form of logs in a "Debrisk.log" file in text format located in the DEBRISK execution directory.

In addition to the normal "user" display, logs of the "DEBUG" type are recorded to save the information generated during the calculation (important variable values, location of the process in progress in the code, etc.). To display these extra logs, the "–debug" parameter must be specified when launching the application (see §7.4.1).

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 34/120	

7.5 Normal operation

7.5.1 Graphic interface

In this section, you will learn how to use DEBRISK. When opening the software, the home page should be similar to what you can see below.

				_	o x
ile Help					Memo
Debris Risk Assesment ×					
DEBRISK®				Clear	t nes
Scenario		Visualisation			
Entry conditions Object Simulation Par	ameters Material	Add Delete	Invert	\sim	
Date UTC (yyyy-mm-dd) and hour (hh:m	nm:ss)* :				
2012-01-01	00:00:00 🜩				
Position (EME2000)					
Input method :	Apogee / Perigee 🗸 🗸				
Semi major axis [km]* :	6518.13646				
Eccentricity*:	0.0				
Apogee altitude [km]* :	140.0				
Perigee altitude [km]* :	140.0				
Inclination angle [°]* :	0.0				
Perigee argument [°]* :	0.0				
Right ascension of ascending node [°]*	: 0.0				
True v anomaly [°]*:	0.0				
Earth equatorial radius [km] :	6378.13646				
	Import TLF				
Reset Run Cancel	0% 0%				

Figure 8 Home page

At this stage, it is possible to distinguish between the two main parts of the software, namely:

- the message area on the top,
- the scenario on the left,
- the view of the results on the right.

cnes	CNES	DEBRISK	Ref.	DBK-MU-LOG-0268-THA	
	DEBRISK		Date	21/03/2025	
			Version	2.22	Page: 35/120

There is also a main menu accessible in the top left-hand corner.

7.5.1.1 Menu

File	Help		
	New	Ctrl+N	
	Open	Ctrl+0	
	Export	>	
	Save	Ctrl+S	
	Save As	Ctrl+Shift+S	
	Quit	Ctrl+Q	

Figure 9 Menu

The following functions can be accessed from the *File* menu:

"New": creates a new tab in which you can create or open a new case to be studied.

"Open": is used to open a previously saved study case.

"Export": is used to export files to other software packages (Tecplot, Google Earth, CSV).

The *Tecplot*, *Google Earth* and *CSV* files will be encoded following the UTF-8 format. Hence, in order to be able to read it properly, you must use a text editor compatible with UTF-8 (such as notepad++, for instance).

If we want to import the file in Excel or any other program, you must indicate during this process that the file is encoded in UTF-8 format.

"Save": is used to save the case being studied by including the list of objects, the initial conditions, the simulation parameters, and the material properties. The case will be saved to the location from where it was loaded or saved last. In the case of new cases this menu is disabled until the case is saved for the first time.

"Save As..." equivalent to the menu "Save" but ask systematically for the file location to save.

"Quit": is used to close the software.

The following functions can be accessed from the *File* menu:

"Show Help: Opens the Debrisk user manual.

"Show Handbook/Methodology": Opens the Debrisk methodology guide.

"About": Shows the dialog containing the program information.

"Show Licence": Shows the dialog containing the licence.

Figure 10: About dialog.

DEBRISK

Debrisk Licence

🛓 Debrisk Licence	×
Ref : DBK-NQ-LOG-0570-CNES Ed.1.1 04/09/2023	^
AGREEMENT CONCERNING DEBRISK v.3	
(You must read and accept the terms of the license to download the software.)	
Please read the terms and conditions of this License carefully before downloading the SOFTWARE. Use of the SOFTWARE by the Licensee signifies that the Licensee has accepted the terms and conditions of this License.	
The DEBRISK SOFTWARE, which is the subject of this License, is the property of CNES. CNES owns the right to distribute licenses for the use of the SOFTWARE which has been registered at the APP (Agence pour la Protection des Programmes) under the n° IDDN.FR. 001.390004.003.S.P.2013.000.31235.	
The SOFTWARE as a work is protected by the French Intellectual Property Code under the provisions of L111-1 and following.	
$\ensuremath{\text{CNES}}$ grants a non-exclusive license to the SOFTWARE to the Licensee, who may be an individual or a legal entity.	
RIGHTS GRANTED	
$CNES\ grants$ the Licensee, free of charge, a non-exclusive right to use the SOFTWARE, supplied as an executable with its documentation.	
CNES grants the Licensee the non-exclusive right to sub-license the SOFTWARE free of charge.	
The licensee is not allowed to make copies of the SOFTWARE, other than a backup copy if this is necessary to preserve the use of the SOFTWARE.	
LICENSEE OBLIGATIONS	
These rights are granted subject to compliance with the following conditions:	
- The Licensee is not allowed to make any commercial use of the SOFTWARE.	~
OK Help	

Figure 11: Licence dialog.

	CNES		Ref.	DBK-MU-LOG-02	268-THA	
C	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 38/120	

7.5.1.2 Scenario area

Entry conditions:

cenario					
Entry conditions	Object	Simulation Parameters	Material		
	O	bit *	Pivot		TLE Convert
	De	eactivate conversions			
		Date: *		01/01/2012 00h00m00	s <u>UTC</u> +/-
		Frame:	EME2000	\sim	
		Type:	Keplerian	\checkmark	
			0	~	
		Nature:	Osculatin	g 🔾 Mean	
		Nature: Keplerian Parameters	Osculatin *	ng 🔾 Mean	
		Nature: Keplerian Parameters a: *	• Osculatin • *	g () Mean 6494.65355	<u>km</u>
		Nature: Keplerian Parameters a: * e: *	() Osculatin ;* [g () Mean 6494.65355 0.00175298	<u>km</u>
		Nature: Keplerian Parameters a: * e: * i: *	Osculatin , *	g Mean 6494.65355 0.00175298 96.574	<u>km</u> deg
		Nature: Keplerian Parameters a: * e: * i: * Ω: *	(● Osculatin ,* [[[g () Mean 6494.65355 0.00175298 96.574 -15.302	km deg deg
		Nature: Keplerian Parameters a: * e: * i: * Ω: * ω: *	(● Osculatin ,* [[[[g Mean 6494.65355 0.00175298 96.574 -15.302 76.522	km deg deg deg
		Nature: Keplerian Parameters a: * e: * i: * Ω: * ω: * Anomaly: *	Osculatin	g () Mean 6494.65355 0.00175298 96.574 -15.302 75.522 -99.592	km deg deg deg deg

Figure 12 Scenario area

You will find various tabs in this area. The first one, named "Entry conditions", must be filled in with the general parameters of the initial point corresponding to the kinematic conditions of the spacecraft to be studied.

Allows you to define an orbit with an absolute date, a frame, an orbital parameter type, an orbital parameter collection, and the necessary celestial constants. This is the equivalent widget to the *Orbit class* in PATRIUS.

It has the following graphical components:

- A label (*copy/paste/import/export menu* attached).
- A pivot button.
- A checkbox to block/unblock conversions.
- An input field for the date
- A selector of the frame
- A drop-down list to choose the type of orbital parameters:
 - Available options: All types available in PATRIUS: "Keplerian ", "Cartesian ", "Circular ", "Equinoctial ", "Equatorial", "Apsis Radius", "Apsis Altitude", "Reentry ".

	CNES		Ref.	DBK-MU-LOG-02	268-THA	
C	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 39/120	

The concept of "pivot"

This widget is actually quite complex as it offers many different parameter frames and types but also allows for conversions. It is very interesting for example if you want to quickly see at what altitude your perigee is when you initially get Cartesian parameters!

Frame:	CRF	-	
Type:	Cartesian	-	
Cartesian Parameters	s *		
x: *	[3295.70380176292	<u>km</u>
y: *	1	5683.65017359001	km
z: *	[439.631391348975	km
Vx: *	1	-6.74200496491514	km/s
Vy: *	[3.90930999706841	km/s
Vz: *	Ĩ	0.439250454593903	km/s
μ: *	Select	398600.4415	km^3/s^2
Frame:	GCRF	-	
Type:	Apsis Altitud	le 💌	
Apsis Altitude Paran	neters *		
hp:		200.0	0 <u>km</u>
ha:		300.0	0 km
i:		5.	deg
Ω: *		10.0	deg
ω: *		20.0	deg
Anomaly:	true	30.0	deg
μ	Select	398600.441	5 km^3/s^2
rom		0070 400	-

Unfortunately, feedback from several years of use shows that you will definitely get numerical uncertainties and when you have to go back to the first input, you will not get back exactly the same values.

The "pivot" is a very important concept that allows us to answer this problem. The basic idea is to store the initial entry in the form of a reference (the "pivot"). Thus, each time the user requests a conversion, it will be checked whether the format is equal (or not) to the reference. If this is the case, no conversion will be performed, the reference will be retrieved. The "pivot" is then defined by:

- The frame
- The type of parameters
- The type of anomaly (if any)

At any time, the user can modify the definition of the "**pivot**" by clicking on the dedicated button.

On the other hand, if the user changes a value (like the eccentricity in Keplerian parameters), the " **pivot** " will be automatically changed (because we will be on a new orbit). In the same idea, if the user changes the " μ " value (or the equatorial radius or the flatness), the orbit will also be changed. Nevertheless, a conversion will be done because it could be useful to see the influence of such constants.

Moreover, it is always possible to disconnect this conversion possibility: indeed, this is a basic case where the user started entering orbital parameters before choosing the right reference!

The pivot button is not enabled at all times. The following conditions must be true for it to be enabled:

- The widget must be enabled.
- The orbit must not be in error.
- The checkbox to block conversions must not be enabled.
- The widget does not show the "Pivot" data
- The parameters are not zero.

The "Pivot" is updated with the current widget data in the following cases:

- When the user clicks the pivot button.
- When the date, one of the orbital parameters, or one of the celestial constants are changed.
- When conversions are blocked (checkbox is checked) and:
 - The user changes the frame.
 - The user changes the type of parameters.
- When you uncheck the box to block conversions.
- When assigning the widget with an *Orbit object*.
- When reading a configuration by file.
- When we clear the widget.

As soon as the user selects a different landmark, a different parameter type, or a different anomaly type (if possible), the orbital parameter collection is updated, but the "Pivot" is not updated.

If at any point the user enters a combination of data that results in an error status, the frame selector, parameter type selector, and pivot button are disabled (unless the checkbox to disable conversions is checked) until the data is corrected, to avoid freezing an invalid "Pivot".

The checkbox to block conversions is used for precisely that: when it is checked, if the user changes the reference frame, the anomaly type or modifies one of the celestial constants, the six orbital parameters do not change, are not recalculated. After a change of the parameter type, as the parameter collection changes, they are all reset to zero. This feature makes it easier to reconfigure the widget if, for example, you started to enter a bulletin but you realize that you were not in the right reference frame.

The date entered is limited by the ephemeris data files available in the orekitdata/DE-406-ephemerides/ folder in the DEBRISK installation folder. Each file contains data for 300 years from the date mentioned in the file name (e.g. unxp1800.406 contains the data for the years 1800 to 2100). DEBRISK is therefore

installed with the data for the years 1800 to 3000. If the date entered is outside this bracket, a message informs the user that simulation is not possible and prompts him to download the data files containing the years for which he wants to conduct a simulation. These files are available on ftp://ssd.jpl.nasa.gov/pub/eph/planets/SunOS/de406/.

The values of the entry conditions will be verified for coherence, if the values are not coherent the paramaters color turns red:

cenario				
Entry conditions	Object	Simulation Parameters	Material	
	(Orbit 😂 *	Pivot	TLE Convert
	[eactivate conversions		
		Date: *		01/01/2012 00h00m00s UTC +/-
		Frame:	EME2000	\sim
		Туре:	Keplerian	\sim
		Nature:	Osculatio	ing 🔵 Mean
		Keplerian Parameters	8 8 *	
		a: *		-6494.65355 <u>km</u>
		e: *		0.00175298
		i: *		96.574 deg
		Ω: *		-15.302 deg
		ω: *		75.522 deg
		Anomaly: *	true	-99.592 deg
		μ: *	Select	398600.4415 km^3/s^2

Figure 13 orbit containing the incoherences.

There is the possibility to enter data from a TLE by clicking on the dedicated button. This data will be automatically converted into osculating parameters

🛣 TLE Entry window							
TLE entry:							
1 22402U 92093CT 99216.66458328 .00027405 00000-0 61707-2 0 3098 2 22402 070.6355 282.2899 0105779 117.9687 243.2185 14.52871844343948							
Convert Test				Cancel			
Orbit *	Pivot			TLE Convert			
Deactivate conversions							
Date: *	04/08/1999	15h56r	n59s995ms392us000r	ns <u>UTC</u> +/-			
Frame:	GCRF	-					
Туре:	Apsis Radiu	s 🔻					
Apsis Radius Parame	eters *						
rp: *			7020.69555240981	<u>km</u>			
га: *			7180.48887695035	<u>km</u>			
i: *			70.6472726246068	deg			
Ω: *			-77.710100979071	deg			
ω: *			113.185330882728	deg			
Anomaly: *	true		-113.187578717263	deg			
μ: *	Select		398600.4418	<u>km^3/s^2</u>			

7.5.1.3 Objects tab

The object tab allows you to add new objects using the *Add* button, to edit some objects already created using the *Edit* button, to duplicate objects using the *Duplicate* button, to delete them using the *Delete* button and to change from input to output display –and vice versa- after having run a configuration using the *Swap* button.

When clicking on "Duplicate", the whole group of children, grandchildren,... of the selected object will also be duplicated.

The activation of these buttons works according to the following logic:

- "Add" button follows the same logic than the "Run" button.
- "Delete" button is active whenever the "Run" button is enabled and at least one row is selected in the object table.
- "Duplicate"/"Edit" buttons are active when the "Run" button is enabled and if **one** row is selected in the object table.

- "Swap" button is only active when results of a computation are available i.e. whenever the "Reset" button is enabled

In the left part, you can see a tree representing the overall structure of the case you are about to simulate. The indentation of the elements in this tree shows the parent-child links existing between the different objects. This tree offers the user the possibility to drag and drop any object into another one: the latter will automatically become the parent of the selected object and the table will be properly updated with the new information. From a practical point of view, the user is not allowed to move an object downwards along the same branch since it does not add any physical meaning to the problem.

Scenario													
Entry conditions Object Simulation Parameters Material													
Add Edit Dunkrata Dalata Swan													
			онар										
Root Object	ł.,	_	-			D (Usiaha	D (Width (D	Length (D			-1.		
Formt cAlcotol	Name	Q	Snape	Material	Mass_th	Cout Height	Kin/ Widul / Ks	Lenguit K	Inickness	Angle	Flatness	CCond	
Eqmt saicatel	Death Ohi		Culturation	Alexanderic	2051 14722		1.0757	5.74	24.2				
MTS-UGM	Root ODJ	1	Cylinder	Aluminium	3051.14/23	1.1	1.0757	5.74	24.3			0.0	^
HPG	Formt cAl	1	Cylinder	Aluminium	15495.0201	0.915	0.0	1.9	915.0			0.0	
VGT	EQITE SAL	1	Culinder	Aluminium	12 0421057	0.2	0.1126	0.429	30.7			0.0	
	MTS-UGM	1	Cylinder	Aluminium	13.0421057	0.1245	0.1126	0.430	25.0			0.0	
	MIS-OPM	1	Cylinder	Aluminium	31.3433908	0.145	0.1192	0.436	25.0			0.0	
VECA	VCT	1	Cylinder	Aluminium	152 670415	0.47	0.434	0.72	14 50000			0.0	
		1	Cylinder	Aluminium	155.070415	0.52	0.3035	0.72	4.50000			0.0	
MVB	ULS	1	Cylinder	Aluminium	0.00913942	0.17	0.1034	0.51	4.000000			0.0	
	VECA	1	Cylinder	Aluminium	1 51565072	0.455	0.1360	1.20	3.000000			0.0	
BSD	OUS	1	Cylinder	Aluminium	1.51303973	0.13	0.1209	0.099	3.0999999			0.0	
- Roues inerties	MVD	1	Cylinder	Aluminium	E 00400607	0.0425	0.0328	0.133	3.7			0.0	
REC	CCU	1	Cylinder	Aluminium	16 1251706	0.107	0.0972	0.20	5.0			0.0	
Electropique MEGS	RCD	1	Cylinder	Aluminium	17.0034077	0.120	0.1155	0.515	12.3			0.0	
MECS	Dor	1	Cylinder	Aluminium	17.9924077	0.120	0.1097	0.45	10.5			0.0	
EATM	Roues In	1	Cylinder	Aluminium	10.3090977	0.176	0.1374	0.135	20.0			0.0	
TAC	DEG	1	Cylinder	Aluminium	4.40405155	0.091	0.0825	0.20	5.500000			0.0	
143	Electroni	1	Cylinder	Aluminium	4.52020551	0.125	0.1195	0.20	3.300000			0.0	
EDDM	EATM	1	Cylinder	Aluminium	22 4424416	0.1025	0.005	0.52	20.7			0.0	
STD	TAC	1	Cylinder	Aluminium	15 9622411	0.1373	0.1300	0.32	20.7			0.0	
MAC	145 UMT	1	Cylinder	Aluminium	15.0052411	0.120	0.1104	0.404	13.0			0.0	
trend	EDDM	1	Sphere	Aluminium	0.02551009	0.136	0.1231	0.07	14.9			0.0	
PS1D	EPRM	1	Cylinder	Aluminium	2 41007457	0.125	0.1069	0.37	4.000000			0.0	
Rattorion	SID	1	Cylinder	Aluminium	3.4109/43/	0.1055	0.0994	0.366	4.0999999			0.0	
GS	trend	1	Cylinder	Aluminium	2.01001013	0.015	0.0005	0.910	5.0			0.0	
EDD	u spu	1	Cylinder	Aluminium	46 5061122	0.0965	0.0935	0.235	3.0			0.0	
ORA	Ratteries	1	Cylinder	Aluminium	40.3901132	0.24	0.2203	0.76	47.0			0.0	
olateau inferieur	CE	1	Cylinder	Aluminium	01 6507226	0.15	0.0021	0.404	1,500000			0.0	
plateau interieur	65	1	Cylinder	Aluminium	91.039/230	0.95	0.9404	2.01	1.399999			0.0	¥
plateau batterie	mass_a: 180	90.6	562 kg mass	_th: 3051.14	172342930238 k	g							
cylindro V	mass_c: 1503	39.5	089001394	(g mass_b: 6	.556757216458	21E-5 kg							
L'action de la companya	└─cylindre Y gs_num: 0 gs_mass: 0.0 kg gs_surface: 0.0 m^2												
Reset Run Cance	el				0 %					0 '	%		

Figure 14 Object tab

Below the objects table, before the simulation, the satellite mass decomposition is displayed:

- mass_a: aerodynamic mass of the satellite (kg)
- mass_b: ballast mass (kg)
- mass_c: mass of the satellite children (kg)
- mass_th: thermal mass of the satellite (kg)
- gs_num: number of solar generators.
- gs_mass: total mass of the solar generators.
- gs_surface: total surface of the solar generators.

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 45/120

mass_a: 3.9062430245E6 kg mass_th: 4.960860000000001E-4 kg mass_c: 3.50594200318252E6 kg mass_b: 400301.020821391 kg gs_num: 0 gs_mass: 0.0 kg gs_surface: 0.0 m^2

Figure 15: Total casualty area after a simulation reset.

If the ballast mass is negative, it will be displayed in red.

mass_a: 1.9062430245E6 kg mass_th: 4.960860000000001E-4 kg mass_c: 3.50594200318252E6 kg mass_b: -1.59969897917861E6 kg gs_num: 0 gs_mass: 0.0 kg gs_surface: 0.0 m^2

Figure 16: Negative ballast mass.

After the simulation, the total casualty area (corresponding to the addition of the casualty area of all the fragments)) and the total weighted casualty area will be displayed below the objects table:

<	1	69594 77	0.0	0.0
Total Cas Total We	sualty A	area: 45.616 Casualty Are	m2 a: 31.34	2 m2

Figure 17: Total casualty area value after an execution.

If a configuration file without satellite aerodynamic mass (i.e. from a previous version) is opened, the satellite aerodynamic mass is computed by adding the satellite thermal mass and the mass of solar panels. This case will generally lead to a negative ballast mass.

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes	CNES	BEBBISK	Version	2.22	Page: 46/120

Creation of objects

Please note that the first object in the list is <u>always</u> a spacecraft, while the others are always fragments. The spacecraft can only be modelled by a box, a cylinder or a sphere, and solar panels can be added.

To add an object, select a parent object in the tree or the table and click on the *Add* button. A new window is displayed:

Object properties						
Alexa B.	Commentation of the second sec	^	Object: cyline	ıder flat ends - random tun	nblir	ing
Name :	spaced and		outer radius	s [m]: 1.1	1	
Relationship	child 🗸 🗸		inner radius	s [m]: 1.0757	1	thickness [mm]: 24.3
Total mass of vehicle with SP [kg]*:	18090.6562		length	[m]: 5.74	1	mass_t [kg]: 3051.14723429302
Object's quantity:	1		volume	[m ³]: 1.13005453121964	ł	Leensky [kg/m]; 2700.0
Shape*:	Cylinder ~					
Specification*:	hollow: outer radius [m],inner radius [m],i $ \vee$					
Material*:	Aluminium ~					
Outer radius [m] *:	1.1					
Inner radius [m] *:	1.0757					
Length [m]*:	5.74					
Conduction Coefficient [W/K]:	0.0					
Drag coefficient multiplier:	1.0					
Drag coefficient additive:	0.0					
		<				
Apply Cancel Solar Panels	Drag/Heat INP Help 🗹 3D Active	Cut	view			

Figure 18 Adding a root object window.

🖴 Object properties						
		^	Object: h	ollow	box tumbling	
Parent:	Root Object		length	[m]:	0.8	
Name*:	Child		width	[m]	0.8	mass_t [kg]: 165.1369650408
Relationship	child 🗸 🗸		height	[m]	0.2	density [kg/m ³]: 2700.0
Object's quantity:	1		volume	, 3,	0.061161838904	thickness [mm]: 36.7
Shape*:	Box 🗸			[[m]]:	0.001101030501	Ak Flow
Specification*:	length [m],width [m],height [m],thickness $ \sim$					
Material*:	Aluminium 🗸		Ì			
Length (m)*:	0.8					
Width [m]*:	0.8					
Height [m]*:	0.2					
Thickness [mm]*:	36.7					
Conduction Coefficient [W/K]:	0.0					
Use Separation Temperature						
Separation Temperature	573.0					
Drag coefficient multiplier:	1.0					
Drag coefficient additive:	0.0					
		Ŷ				
Apply Cancel Drag/Heat	INP Help 3D Active Cut view					

Figure 19 Adding an object window.

In this window, you are asked to enter the following elements:

- Parent: contains the name of the object parent of the one being created (for the spacecraft this field is not displayed).
- Name: allowing to insert the name of the object.

The name of the object cannot contain the character "#", using this character makes the object invalid.

- Relationship: menu to indicate if we are creating a "component" or a standard "child", for more details see "creation of components" paragraph below.
- Object's quantity: this parameter is used when the operator wants to define several fragments with the exact same characteristics. Even if Q>1, a single simulation will be run for the fragment.

This value will only be used to compute the aerodynamic mass of an object having children with Q/=1 and for the casualty area (which will be computed as the casualty area of the simulated fragment multiplied by Q).

- Shape: selection of the shape of the object.
- Specification: selection of the mode to enter the dimensions of the object according to the data at your disposal. All the other data will be calculated by DEBRISK so that they correspond to the data provided by the user.
- Material: the material of the object to be selected in the list.
- Dimensions to be complemented according to the mode selected beforehand. If mass is one of the required dimensions, the thermal mass of the object is expected. The other dimensions are derived from the first ones and all the dimensions are displayed in the table on the right of the "Object properties" window.
- For the satellite only, the aerodynamic mass corresponding to:

aerodynamic_mass = thermal_mass + ballast_mass + children_mass + solar_generators_mass

The *ballast_mass* is then calculated automatically by DEBRISK as:

cnes	CNES		Ref.	DBK-MU-LOG-0268-THA		
	DEBRISK	DEBRISK	Date	21/03/2025		
			Version	2.22	Page: 48/120	

ballast_mass = aerodynamic_mass - (therma_mass + children_mass + solar_generators_mass)

The ballast_mass is displayed below the object table.

For other objects, the aerodynamic mass is not displayed but is computed by Debrisk taking into account the quantity of unborn children of the fragment to be simulated. This value is computed recursively:

 $Aerodynamic_mass = thermal_mass_of fragment + \sum (child_mass * child_quantity * (child_child_mass * child_child_quantity ...))$

• Conduction coefficient: This coefficient represents the thermal conductance between an object and its parent object. It only applies to objects which are in contact. It can be defined for any object except the root object (satellite). The definition of the conduction coefficient can be done following a Linear or a Polynomial model.

In the Linear case, the first number in each pair is the temperature, and the second corresponds to the value of the conductance coefficient. In this mode, a straight line is drawn between each pair of values.

Specification of Conductar	Specification of Conductance Coefficient					
	Linear OPolynomial					
Temperature [K]	Conductance Coefficient					
۵	0.0 +]				
1.0	2.0 -	^				
2.3	4.0 -					
		~				
	Appiy Cancel Help					

Figure 20 : Linear model for conductance

If you prefer to use the polynomial form, you must specify the degree of the polynomial and provide the coefficients. If you enter only one coefficient, this means that the parameter is constant over the whole temperature range.

	CNES	DEBRISK	Ref.	DBK-MU-LOG-02	268-THA	
C	DEBRISK		Date	21/03/2025		
cnes			Version	2.22	Page: 49/120	
		Specification of Conductance Coefficient		×		
		O Linear Polynomial				
		Degree*: 3 f(T) = 10.0	~			

25.0 13.0

120

Apply Cancel Help

x^2

x^3

Figure 21 : Polynomial model for conductance

If no value is entered, the conductance coefficient value is the default value: 0.

Solar panels can be added on the root object (satellite) using the "solar panels" button, which is only displayed on the window for this object.

• Separation temperature

The user can choose to specify a temperature beyond which the object will automatically be considered fully ablated. To do so, the user can check the "use separation temperature" box and specify the separation temperature.

When an object has the "separation temperature" criterion activated, then all its children of type component who also have "separation temperature" criterion activated must have a higher separation temperature than their parent. Otherwise, they will be considered invalid and displayed in red.

cnes	CNES		Ref.	DBK-MU-LOG-0268-THA		
	DEBRISK		Date	21/03/2025		
		DEBRISK	Version	2.22	Page: 50/120	

You can then specify the number of solar panels, the mass and the unit surface of the panels.

ڂ Solar panels definition	×
Number of Solar Panels:	2
Mass [kg]:	100.0
Surface [m²]:	10
Total mass : 200.0 kg	Total surface : 20.0 m ²
Apply Cancel Help	

Figure 22 Adding solar panels

Finally, click on Apply to create the object or on Cancel to cancel the creation.

The values of the object will be verified for coherence, if the values are not coherent a message containing the incoherences is displayed at the bottom of the dialog and if the user applies a confirmation dialog will be displayed:

Parent:	Root Object	
Name*:	Egmt sAlcatel	
Relationship:	child	~
Object's quantity*:	1	
Shape:	Box	~
Snape:	longth [m] width [m] height [m] thickness [m]	
Matorial:	Aluminium	
material.		Ť
Length [m]":	2.0	
Width [m]*:	4.0	
Height [m]*:	5.0	
Thickness [mm]*:	36.7	
Conduction Coefficient [W/K]:	0.0	
Use Separation Temperature		
Separation Temperature:	573.0	
		\square
)bject warnings:		
The length should be larger that	the width.	
Apply Cancel Help	JD Active Cut view	

Figure 23 Incoherence dimensions dialog

Figure 24: confirmation dialog

In this case the user has the option to continue the edition of the object or accept the incoherence, in the latter case the object line will be displayed in red in the object table.

Name	Q	Shape	Material	Mass_t	Rout/ Height	Rin/ Width	Length	Thickness	CCond	xCd	+Cd
Spacecraft	1	Cylinder	Aluminium	-65904.0794	1.1	1.5	5.74	-400.0	0.0	1.0	0.0
Structure	1	Cylinder	Aluminium	13493.0281	0.915	0.0	1.9	915.0	0.0	1.0	0.0

Figure 25 Display of an incoherent object

When you click on an object in the tree, the corresponding object in the table will be selected, and vice versa.

Creation of components

A component is a type of object that has the following characteristics:

- A component cannot have children.
- The mass of a component is not taken into account in the aerodynamic mass of the parent.
- A component does not participate to the conduction heat fluxes.
- The spacecraft cannot be a component.
- When the parent disappears, the component will only be born if the parent's disappearance is due to the fact that it reached its separation temperature. Otherwise (in case of ablation, for instance), the component will not be born.
- When a component is born, its temperature equals its parent's separation temperature.

A component can be created by selecting "component" in the "Relationship" menu in the object properties window.

	CNES		Ref.	DBK-MU-LOG-0268-THA		
cnes	DEBRISK	DEBRISK	Date	21/03/2025		
			Version	2.22	Page: 52/120	

Solution Contraction Contractica Contracti		
Parent:	Root Object	
Name*:	Structure	
Relationship	component	~

Figure 26: Relationship menu

When created, a component appears in blue in the objects tree on the left side of the objects table if a separation temperature has been defined for its parent. Otherwise, it is displayed in grey and will never be born.

If a component has descendants, they can only be of component type, otherwise the component will be displayed in red and considered invalid.

The spacecraft object cannot be of component type, otherwise it will be displayed in red and considered invalid.

The objects table

When you click on an object in the tree, the corresponding object in the table will be selected, and vice versa.

In the table you will find the following information:

- Name: object name, only used to track objects during data post-processing.
- Quantity of fragments: This parameter is used when the operator wants to define several fragments with the exact same characteristics. Even if Q>1, a single simulation will be run for the fragment. This value will only be used to compute the aerodynamic mass of an object having children with Q/=1 and for the casualty area (which will be computed as the casualty area of the simulated fragment multiplied by Q)
- Shape: shows the geometry selected to represent this object. This can be a sphere, a box, a cylinder, etc. All the geometries and associated parameters are presented later in this manual.
- Material: shows the material used for the object
- Mass_th: shows the mass of the object itself, without taking the mass of the children into account. This mass therefore corresponds to the thermal mass in the software, as it is the mass used in thermal equations.
- Rout/Height, Rin/Width/Rs Length/Rl and Thickness, Angle, Flatness: dimensions of the object. The dimension presented in the column depends on the type of object considered. If you run the mouse over the column header, you can view the dimension presented according to the shape. The Angle and Flatness columns apply only to complex shapes, for simple shapes they will be greyed out.
- CCond: Conduction coefficient that will be applied to the computation of the conduction flux.

In this table, double-clicking on one of the cells allows you to edit the corresponding data of the object, unless you double-click on the "name" column, in which case you can only edit the object name. Note that Shape cells cannot be edited in the objects tab.

Only the dimensions of the object corresponding to their definition method will be editable. The other dimensions are derived from the first ones are read only and displayed in italics. The Angle and Flatness columns apply only to complex shapes, for simple shapes they will be greyed out.

For example, if a sphere is specified using inner and outer radius, the mass and thickness cells will be read only and displayed in italics.

T4S	1	Cylinder	Aluminium	15.8632411042505	0.126	0.1104	0.404	15.6		0.0
UMI	1	Sphere	Aluminium	8.6255108985673	0.138	0.1231	0.0	14.9		0.0
EPRM	1	Cylinder	Aluminium	15.0578544225061	0.125	0.1089	0.37	16.1		0.0

Figure 27 Display of read only dimensions

If you run your mouse above a line in the table, you will see information on the object as in Figure 28. This information includes in particular the physical parameters used to create the object. If one of the values is in red, this means that the value of this parameter is not consistent with the other chosen values.

Add Edit D	uplica	ate Del	ete	Swap											
Root Object	~	1													
Structure		Name	Q	Shape	Material	Mass_th	1	Rout / Heig	ht	R _{in} /Width/R _s	Length/R	Thickness	Angle	Flatness	CCond
Eqmt sAlcatel															
MTS-UGM		Root Obj	1	Cylinder	Aluminium	3051.14723429302	2 1	.1	:	1.0757	5.74	24.3			0.0
MTS-UPM		Structure	1	Cylinder	Aluminium	13493.0281352308	7 0	.915	(0.0	1.9	915.0			0.0
HRG		Eqmt sAl	1	Box	Aluminium	165.1369650408	0	.2		0.8	0.8	36.7			0.0
VGT		MTS-UGM	1	Cylinder	Aluminium	13.0421057334141	: O	.1245		0.1126	0.438	11.9			0.0
····ULS		MTS-UPM	1	Cylinder	Aluminium	31.5433968488261	r 0	. 145		0.1192	0.438	25.8			0.0
HRS		HRG	1	Cylinder	Aluminium	356.912390507415	F 0	.47		0.454	2.4	16.0			0.0
····VEGA		VGT	1	Cylinder	Aluminium	153.670415837342	? 0	.52	(0.5055	0.72	14.50000			0.0
OUS		ULS	1	Cylinder	Aluminium	8.80915942642439	<u>ہ</u> ر	.17	(0.1654	0.51	4.600000			0.0
MVR		HRS	1	Cylinder	Aluminium	89.8569487605715	7 0	.455		0.4482	1.28	6.800000			0.0
<mark>CCU</mark>		VEGA	1	Cylinder	Aluminium	1.51565973706967	7 0	.13		0.1269	0.099	3.0999999			0.0
BSP		OUS	1	Cylinder	Aluminium	1.00104566031611	1 0	.0425	(0.0328	0.133	9.7			0.0
-Roues inerties		MVR	1	Cylinder	Aluminium	5.98408687721431	r 0	. 107		0.0972	0.26	9.8			0.0
BEG		CCU	1	Cylinder	Aluminium	16.1251706993365	0	. 128		0.1155	0.515	12.5			0.0
Electronique MEGS		BSP	1	Cylinder	Aluminium	17.992407714579	उ ०	.126	(0.1097	0.45	16.3			0.0
MEGS		Roues in	1	Cylinder	Aluminium	16.569897798758	Objec	t: cylinde	r flat	ends - random	n tumbling				
EAIM		BEG	1	Cylinder	Aluminium	4.4840513504374	Ē	-		7					
T4S		Electroni	1	Cylinder	Aluminium	4.5262635172069	oute	er radius	[m]:	0.128		[1 40 F	
UMI		MEGS	1	Cylinder	Steel	42.057246981861	linne	e endine	[m]	0.1155		thickness	[mm]:	12.5	
EPRM		EAIM	1	Cylinder	Aluminium	33.442441624491	inne	rradius	լույ։	0.1155		mass t	[ka]:	16,125170	6993365
STD		T4S	1	Cylinder	Aluminium	15.863241104250	leng	th	[m]:	0.515			1		
MAC		UMI	1	Sphere	Aluminium	8.6255108985673			-	-		density	[ka/m ³]:	2700.0	
trspd		EPRM	1	Cylinder	Aluminium	15.057854422506	volu	ime	[m ³]	: 0.0059722854	14419871				
RSJD		STD	1	Cylinder	Aluminium	3.4109745739191	<u> </u>		<u> </u>						
Batteries		MAC	1	Cylinder	Steel	4.11961615682541	r 0	.015		0.0065	0.916	8.5			0.0
GS		trspd	1	Cylinder	Aluminium	2.81801096646454	f 0	.0985		0.0935	0.255	5.0			0.0
EDR		RSJD	1	Cylinder	Aluminium	46.5961132028304	f 0	.24		0.2283	0.78	11.7			0.0
OBA		Batteries	1	Cylinder	Aluminium	45.4632715813428	7 0	.13		0.0821	0.464	47.9			0.0
plateau inferieur		GS	1	Cylinder	Aluminium	91.6597236365872	? 0	.95		0.9484	2.61	1.599999			0.0
plateau batterie		mass at 18	190.E	562 kg mass	th: 3051.1	472342930238 kg					1	1		i	
plateau sup		mass c: 150	39.5	089001394	c mass b: 6	.55675721645821E-	5 ka								
cylindre	\sim	as num: 0 a	is ma	ass: 0.0 kg g	s surface: 0	.0 m^2	-								

Figure 28 Information table

C	CNES		Ref.	DBK-MU-LOG-02	268-THA	
	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 55/120	

Edition of objects

If you click on the "Edit" button, a new window will display as in Figure 29.

Object properties										×
Parent:	Root Object	О	ject: cvlind	er flat	ends - random tumblin	ng				
Name*:	MTS-UGM		outer radius	[m]	0.1245	ľ				
Relationship:	child ~		nner radius	[m]·	0.1126	thic	ckness [m	m]: 11.9		*
Object's quantity*:	1		ength	[m]:	0.438	ma	ss_t [kį	g]: 13.0421057334141		There are a
Shape:	Cylinder v		uahuma	. 3.	0.0048304005308041	der	isity [kj	y/m ³]: 2700.0	Air Flow	
Specification:	hollow: outer radius [m],inner radius [m],length [m] $ \lor$		volume	[m [*]]:	0.0048304093308941					une de v
Material:	Aluminium									
Outer radius [m]*:	0.1245									
Inner radius [m]*:	0.1126									
Length [m]*:	0.438									
Conduction Coefficient [W/K]:	0.0									
Use Separation Temperature										
Separation Temperature:	573.0									
Apply Cancel Help	JD Active Cut view									Zoom Level: 100.0

Figure 29 Object edit interface.

This window is identical to the one used to create an object. In this particular case, it is pre-filled with the data for the object selected. You will find in it the parameters visible in the previous table.

In the upper part of the window (Figure 29) you can see an image representing the shape of the object selected and its attitude. In the right part, you will find a table summarising the parameters used for the creation of the object. If one of the parameters is not consistent with the others, it will be in red.

You must click on the "Apply" button for the changes made to be taken into account.

The user can also change the values of the characteristics of each object directly by double-click on the cell of the object table to be modified. Once the operator clicks outside the selected cell, the validity checks are triggered and if the definition of the object is no longer coherent, it is displayed in red (and the "Run" button is disabled), as shown below:

Add Edit Dup	licate Delete	Swap										
Root Object	~ 1											
Structure	Name	0	Shape	Material	Mass th	R/ Height	R _{in} /Width/R	Length/R	Thickness	Angle	Flatness	CCond
-Eqmt sAlcatel		1				ouc -	ir s					
MTS-UGM	Root Object	1	Cylinder	Aluminium	3051.14723429302	1.1	1.0757	5.74	24.3			0.0
MTS-UPM	Structure	1	Cylinder	Aluminium	13493.0281352308	0.915	0.0	1.9	915.0			0.0
HRG	Egmt sAlcatel	1	Box	Aluminium	-128.6767757592	0.2	0.8	-0.8	36.7			0.0
VGT	MTS-UGM	1	Cylinder	Aluminium	13.0421057334141	0.1245	0.1126	0.438	11.9			0.0
ULS	MTS-UPM	1	Cylinder	Aluminium	31.5433968488261	0.145	0.1192	0.438	25.8			0.0
HRS	HRG	1	Cylinder	Aluminium	356.912390507415	0.47	0.454	2.4	16.0			0.0
VEGA	VGT	1	Cylinder	Aluminium	153.670415837342	0.52	0.5055	0.72	14.50000			0.0
OUS	ULS	1	Cylinder	Aluminium	8.80915942642439	0.17	0.1654	0.51	4.600000			0.0
MVR	HRS	1	Cylinder	Aluminium	89.8569487605715	0.455	0.4482	1.28	6.800000			0.0
CCU	VEGA	1	Cylinder	Aluminium	1.51565973706967	0.13	0.1269	0.099	3.0999999			0.0
BSP	OUS	1	Cylinder	Aluminium	1.00104566031611	0.0425	0.0328	0.133	9.7			0.0
-Roues inerties	MVR	1	Cylinder	Aluminium	5.98408687721431	0.107	0.0972	0.26	9.8			0.0
BEG	CCU	1	Cylinder	Aluminium	16.1251706993365	0.128	0.1155	0.515	12.5			0.0
Electronique MEGS	BSP	1	Cylinder	Aluminium	17.992407714579	0.126	0.1097	0.45	16.3			0.0
MEGS	Roues inerties	1	Cylinder	Aluminium	16.5698977987589	0.178	0.1574	0.135	20.6			0.0
EAIM	BEG	1	Cylinder	Aluminium	4.4840513504374	0.091	0.0825	0.28	8.499999			0.0
····T4S	Electronique MEGS	1	Cylinder	Aluminium	4.52626351720699	0.125	0.1195	0.28	5.500000			0.0
····UMI	MEGS	1	Cylinder	Steel	42.0572469818618	0.1025	0.085	0.446	17.5			0.0
EPRM	EAIM	1	Cylinder	Aluminium	33.4424416244917	0.1575	0.1368	0.52	20.7			0.0
STD	T4S	1	Cylinder	Aluminium	15.8632411042505	0.126	0.1104	0.404	15.6			0.0
MAC	UMI	1	Sphere	Aluminium	8.6255108985673	0.138	0.1231	0.0	14.9			0.0
trspd	EPRM	1	Cylinder	Aluminium	15.0578544225061	0.125	0.1089	0.37	16.1			0.0
RSJD	STD	1	Cylinder	Aluminium	3.41097457391911	0.1035	0.0994	0.386	4.099999			0.0
Batteries	MAC	1	Cylinder	Steel	4.11961615682541	0.015	0.0065	0.916	8.5			0.0
GS	trspd	1	Cylinder	Aluminium	2.81801096646454	0.0985	0.0935	0.255	5.0			0.0
EDR	RSJD	1	Cylinder	Aluminium	46.5961132028304	0.24	0.2283	0.78	11.7			0.0
OBA	Batteries	1	Cylinder	Aluminium	45.4632715813428	0.13	0.0821	0.464	47.9			0.0
plateau inferieur	GS	1	Cylinder	Aluminium	91.6597236365872	0.95	0.9484	2.61	1.599999			0.0
plateau batterie	mass a: 18090.6562	ka mas	s th: 3051.	14723429302	238 kg		1	1	1			
plateau sup	mass_c: 14745.6951	593394	kg mass_b:	293.8138063	367572 kg							
cylindre	✓ gs_num: 0 gs_mass: 0	0.0 kg g	s_surface:	0.0 m^2	-							

Figure 30 Editing an object directly in the table

Object	A 1											
Structure Egmt sAlcatel	Name	Q	Shape	Material	Mass_th	R _{out} /Height	R_{in} / Width / R_{s}	Length/R _l	Thickness	Angle	Flatness	CCond
MTS-UGM	Root Object	1	Cylinder	Aluminium	3051.14723429302	1.1	1.0757	5.74	24.3			0.0
MTS-UPM	Structure	1	Cylinder	Aluminium	13493.0281352308	0.915	0.0	1.9	915.0			0.0
HRG	Egmt sAlcatel	1	Box	Aluminium	-128.6767757592	0.2	0.8	-0.8	36.7			0.0
VGT	MTS-UGM	1	Cylinder	Aluminium	13.0421057334141	0.1245	0.1126	0.438	11.9			0.0
ULS	MTS-UPM	1	Cylinder	Aluminium	31.5433968488261	0.145	0.1192	0.438	25.8			0.0
HRS	HRG	1	Cylinder	Aluminium	356.912390507415	0.47	0.454	2.4	16.0			0.0
VEGA	VGT	1	Cylinder	Aluminium	153.670415837342	0.52	0.5055	0.72	14.50000			0.0
OUS	ULS	1	Cylinder	Aluminium	8.80915942642439	0.17	0.1654	0.51	4.600000			0.0
-MVR	HRS	1	Cylinder	Aluminium	89.8569487605715	0.455	0.4482	1.28	6.800000			0.0
CCU	VEGA	1	Cylinder	Aluminium	1.51565973706967	0.13	0.1269	0.099	3.0999999			0.0
BSP	OUS	1	Cylinder	Aluminium	1.00104566031611	0.0425	0.0328	0.133	9.7			0.0
Roues inerties	MVR	1	Cylinder	Aluminium	5.98408687721431	0.107	0.0972	0.26	9.8			0.0
BEG	CCU	1	Cylinder	Aluminium	16.1251706993365	0.128	0.1155	0.515	12.5			0.0
Electronique MEGS	BSP	1	Cylinder	Aluminium	17.992407714579	0.126	0.1097	0.45	16.3			0.0
MEGS	Roues inerties	1	Cylinder	Aluminium	16.5698977987589	0.178	0.1574	0.135	20.6			0.0
EAIM	BEG	1	Cylinder	Aluminium	4.4840513504374	0.091	0.0825	0.28	8.499999			0.0
T4S	Electronique MEGS	1	Cylinder	Aluminium	4.52626351720699	0.125	0.1195	0.28	5.500000			0.0
UMI	MEGS	1	Cylinder	Steel	42.0572469818618	0.1025	0.085	0.446	17.5			0.0
EPRM	EAIM	1	Cylinder	Aluminium	33.4424416244917	0.1575	0.1368	0.52	20.7			0.0
STD	T4S	1	Cylinder	Aluminium	15.8632411042505	0.126	0.1104	0.404	15.6			0.0
MAC	UMI	1	Sphere	Aluminium	8.6255108985673	0.138	0.1231	0.0	14.9			0.0
trspd	EPRM	1	Cylinder	Aluminium	15.0578544225061	0.125	0.1089	0.37	16.1			0.0
RSJD	STD	1	Cylinder	Aluminium	3.41097457391911	0.1035	0.0994	0.386	4.099999			0.0
Batteries	MAC	1	Cylinder	Steel	4.11961615682541	0.015	0.0065	0.916	8.5			0.0
GS	trspd	1	Cylinder	Aluminium	2.81801096646454	0.0985	0.0935	0.255	5.0			0.0
EDR	RSJD	1	Cylinder	Aluminium	46.5961132028304	0.24	0.2283	0.78	11.7			0.0
OBA	Batteries	1	Cylinder	Aluminium	45,4632715813428	0.13	0.0821	0.464	47.9			0.0
plateau inferieur	GS	1	Cylinder	Aluminium	91.6597236365872	0.95	0.9484	2.61	1.5999999			0.0
plateau batterie	mass a: 18090.6562	kg mas	s th: 3051.1	4723429302	38 kg							
plateau sup	mass c: 14745.69515	93394	kg mass b:	293.8138063	67572 kg							

Figure 31 Wrong value while editing an object directly in the table

During the configuration loading, the program might modify automatically the characteristics of an object by rounding some values to remove some extra significant digits. A dialog window is opened to inform the user of the modification and the object line will be marked in blue.

Figure 32: Dialog to inform the user about the automatic modification of the object properties.

The automatically modified object will be kept in blue, until the configuration is saved or until another property of the object is modified, in this case we consider that the automatically modified value has been assessed.

Add Edit Duplicat	te Dele	ete	Swap											
Root Object	Name	Q	Shape	Material	Mass_th	R _{out} /Height	R _{in} / Width / R _s	Length/R _I	Thickness	Angle	Flatness	CCond	xCd	+Cd
	Root Obj	1	Cylinder	Aluminium	3051.14723	1.1	1.0757	5.74	24.3			0.0	1.0	0.0
MTS-UPM	Structure	1	Cylinder	Aluminium	13513.0842	0.915679777	0.0	1.9	915.6797			0.0	1.0	0.0
HRG	Eqmt sAl	1	Box	Aluminium	345.0	0.2	0.8	0.8	99.69199			0.0	1.0	0.0
VGT	MTS-UGM	1	Cylinder	Aluminium	13.0421057	0.1245	0.1126	0.438	11.9			0.0	1.0	0.0
I	MTS-UPM	1	Cylinder	Aluminium	31.5433968	0.145	0.1192	0.438	25.8			0.0	1.0	0.0

Figure 33: Automatically modified object in input panel.

Add Edit Du	plicate	Dele	te	Swap												
Root Object Structure Eqmt sAlcatel	Î	Name	Q	Demise altitude	Impact energy	ΣCasualty area	ΣWeighted CA	Cross section area	End mass_a	Ini mass_a	%Mass_a left	Max T	End T	End CCond	xCd	+Cd
MTS-UGM	R	loot Obj	1	NC	NC	0.0	0.0	11.819	0.0	18090.6562	0.0	300.0	300.0	0.0	1.0	0.0
MTS-UPM	s	tructure	1	100.0	5.43935	6.825	6.825	4.05	13513.0842	13513.0842	100.0	529.9	529.9	0.0	1.0	0.0
HRG	E	iqmt sAl	1	99.99	1324687	1.647	1.647	0.467	280.8491	345.0	81.41	850.0	846.5	0.0	1.0	0.0
VGT	Ν	ITS-UGM	1	71258.63	0.0	0.0	0.0	0.093	0.0	13.0421	0.0	850.0	850.0	0.0	1.0	0.0
ULS	N	ITS-UPM	1	64801.9	0.0	0.0	0.0	0.095	0.0	31.5434	0.0	850.0	850.0	0.0	1.0	0.0
HRS	H	IRG	1	100.0	27394.891	4.104	4.104	2.033	68.4519	356.9124	19.18	850.0	690.2	0.0	1.0	0.0

Figure 34: Automatically modified object in result panel.

7.5.1.4 Simulation Parameters tab

In the Simulation Parameters tab, you will find the options to select:

- The fragmentation method for the satellite.
- The atmosphere model.
- The options for the creation of the Cb/Mach files.

Entry conditions Object Simulation Parame	ters Material
Fragmentation Type	
• Fragmentation altitude [km]* :	78.0
○ Separation temperature [K]*:	573.0
O Spacecraft ablation	
Atmosphere	
Atmosphere model:	US76 🗸
Multiplicative factor for atmospheric density:	1.0
Cb vs Mach	
Create Cb vs Mach file	
Mach step change	5.0
Fine Mach Step	0.1
Coarse Mach step	10

Figure 35: Simulations Parameters tab

The visibility of some of the input fields depend on the value of other fields:

• When "Atmosphere model" is "MSIS2000" the solar and magnetic activity fields are displayed.

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 59/120

7.5.1.5 Materials tab

Each simulation has its own Materials tab, so the modification of the properties of a material of one simulation does not impact the corresponding material of another simulation.

In the Materials tab, you will find the properties of the various materials used in the simulation. This includes the following parameters for each material:

- density in kg/m³
- heat of fusion in J/kg
- melting temperature in K
- oxidation heat in J/kg (O₂)

There is also a graph summarising the thermal properties of the material, in which you will find a line corresponding to the emissivity and Cp according to the temperature.

Some materials are defined by default. They are displayed in purple and named "xxx DEBRISK". They cannot be modified. As for the other types of materials, the user can change the values of their characteristics of each material directly by double-click on the cell of the table to be modified.

I f one of the materials is not recognized by the software when opening of an XML file, DEBRISK ask the user if the materials shall be created with all their properties set to null or if the objects shall be associated with the "Unknown" material, whose properties are visible but cannot be changed in the material table.

The list of all the unknown materials is displayed in a single pop-up to warn the user:

Figure 36 Unknown materials warning pop-up

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 60/120

The creation of these materials by the user is explained in section 7.6.1.3.

The panel contains 2 buttons:

- Load materials: To load a userMaterials file into the panels. The parameters not contained in the file will be loaded with their default values. If the values of the parameters of default materials are different from the default ones, an error message will appear.
- Save simulation parameters: To save the current materials panel contents into an xml file.

Figure 37 Materials tab Panel

Figure 38 Materials tab thermal properties graph

7.5.1.5.1 Loading of a material list

The user can load a material list using the "Load Materials" button and selecting a material list xml file. A confirmation window will be displayed:

Material	Loading Confirmation X
?	The material list will be updated. Please confirm your choice:
	OK Cancel

Figure 39 Load materials confirmation dialog

If the user cancels the current material list will remain unmodified, in other case the new material list will be loaded. The properties of objects related to material properties as the mass and volume will be modified accordingly.

If the new material list does not contain all the materials used by the objects in the simulation, the missing materials will be added to the list. A dialog will be displayed allowing the user to select to add these materials with all their properties set to null or not to add them and use the *Unknown* material instead:

👟 Missing Material Management	×
Missing materials in the material list	
Object MAC using material Steel not in the list.	^
Object trspd using material Aluminium not in the list.	
Object RSJD using material Aluminium not in the list.	
Object Batteries using material Aluminium not in the list.	
Object GS using material Aluminium not in the list.	
Object EDR using material Aluminium not in the list.	
Object OBA using material Aluminium not in the list.	
Object plateau inferieur using material Aluminium not in the list.	
Object plateau batterie using material Aluminium not in the list.	
Object plateau sup using material Aluminium not in the list.	
Object cylindre using material Aluminium not in the list.	
Object Panneaux ext using material Aluminium not in the list.	
Object panneaux int using material Aluminium not in the list.	
Object cylyndre sup using material Aluminium not in the list.	
Object reservoirs using material Aluminium not in the list.	
Which properties do you want to apply to the concerned objects? Null properties = create missing material(s) with null properties.	
Unknown properties = replace missing material(s) with the "unknown" material.	\checkmark
Null properties Unknown properties Cancel	

Figure 40: Selection of missing material properties

7.5.1.6 Result Panel

After a simulation, in the object tab, a table displays a summary of the state of each object at the end of the simulation.

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 62/120	

Scenario													
Entry conditions Object Simu	lation Parameters	Mate	rial										
Add Edda Doubles	Delete												
Add Edit Dupilca	ite Delete	-	swap										
Root Object Structure Eqmt sAlcatel	Name	Q	Demise altitude	Impact energy	ΣCasualty area	ΣWeighted CA	Cross section area	End mass_a	Ini mass_a	%Mass_a left	Max T	End T	End CCond
····MTS-UGM	Root Object	1	78000.0	0.0	0.0	0.0	11.819	0.0	18090.6562	0.0	300.0	300.0	0.0
MTS-UPM	Structure	1	0.0	5.47781142747E8	6.82	6.82	4.046	13493.0281	13493.0281	100.0	451.6	451.6	0.0
HRG	Eqmt sAlcatel	1	0.0	356642.835	1.706	1.706	0.499	148.5888	165.137	89.98	850.0	840.0	0.0
VGT	MTS-UGM	1	9003.1	0.0	0.0	0.0	0.093	0.0	13.0421	0.0	850.0	275.2	0.0
ULS	MTS-UPM	1	0.0	1911.404	0.838	0.838	0.1	3.8025	31.5434	12.05	850.0	714.5	0.0
HRS	HRG	1	0.0	290952.575	4.17	4.17	2.08	223.7475	356.9124	62.69	850.0	811.4	0.0
VEGA	VGT	1	0.0	65492.017	2.532	2.532	0.982	78.3221	153.6704	50.97	850.0	790.8	0.0
OUS	ULS	1	25529.0	0.0	0.0	0.0	0.173	0.0	8.8092	0.0	850.0	190.8	0.0
MVR	HRS	1	0.0	5146.42	2.898	2.898	1.215	21.8606	89.8569	24.33	850.0	582.8	0.0
CCU	VEGA	1	75552.1	0.0	0.0	0.0	0.044	0.0	1.5157	0.0	850.0	850.0	0.0
BSP	OUS	1	73570.42	0.0	0.0	0.0	0.008	0.0	1.001	0.0	850.0	850.0	0.0
Roues inerties	MVR	1	32662.89	0.0	0.0	0.0	0.052	0.0	5.9841	0.0	850.0	232.6	0.0
BEG	CCU	1	2481.65	0.0	0.0	0.0	0.11	0.0	16.1252	0.0	850.0	274.2	0.0
Electronique MEGS	BSP	1	0.0	48.029	0.815	0.286	0.092	0.5902	17.9924	3.28	850.0	381.0	0.0
MEGS	Roues inerties	1	0.0	96.527	0.727	0.511	0.064	1.0742	16.5699	6.48	850.0	518.5	0.0
EAIM	BEG	1	71044.86	0.0	0.0	0.0	0.045	0.0	4.4841	0.0	850.0	850.0	0.0
····T4S	Electronique M	1	72695.56	0.0	0.0	0.0	0.073	0.0	4.5263	0.0	850.0	850.0	0.0
UMI	MEGS	1	0.0	139419.455	0.786	0.786	0.082	29.9133	42.0572	71.13	1700.0	1356.6	0.0
EPRM	EAIM	1	0.0	1294.648	0.939	0.939	0.136	3.6977	33.4424	11.06	850.0	658.2	0.0
STD	T4S	1	0.0	30.596	0.793	0.122	0.084	0.4477	15.8632	2.82	850.0	349.8	0.0
MAC	UMI	1	18991.86	0.0	0.0	0.0	0.048	0.0	8.6255	0.0	850.0	284.0	0.0
trspd	EPRM	1	0.0	29.862	0.77	0.111	0.077	0.4183	15.0579	2.78	850.0	354.7	0.0

Figure 41 Results table

We then find:

- Name: Containing the object name.
- Q: Containing the quantity of fragments. This parameter is used when the operator wants to define several fragments with the exact same characteristics. Even if Q>1, a single simulation will be run for the fragment. This value will only be used to compute the aerodynamic mass of an object having children with Q/=1 and for the casualty area (which will be computed as the casualty area of the simulated fragment multiplied by Q).
- Demise altitude: The object destruction altitude, the cell is coloured in red if the object is not destroyed and in green if it does not reach the ground.
- Impact Energy: The energy of the fragment on impact, the cell is coloured in red if the energy on impact is higher than 14J (or value of maximum energy on impact specified in the expert settings file), in yellow if it is lower or equal, or in green if the object does not reach the ground.
- \sum Casualty Area: The casualty area in the case of an object which reaches the ground.
- \sum Weighted CA: The weighted casualty area in the case of an object which reaches the ground.
- Cross section area: Average surface.

- End mass_a: Final aerodynamic mass of the fragment, in case the fragment is destroyed before reaching the ground, otherwise it will be 0.0.
- Ini mass_a: Initial aerodynamic mass of the fragment.
- %Mass_a left: Percentage ratio between End mass_a and Ini mass_a.
- Max_T: Maximum temperature reached by the fragment.
- End_T: Final temperature of the fragment when it is destroyed or reaches the ground.
- End_CCond: Final value of the conductance coefficient when the object is destroyed or reaches the ground.

Below the table, the total casualty area is displayed:

Total Casualty Area = casualty_area_fragment * quantity * parent_quantity * parent_parent_quantity....

Total Weighted Casualty Area = weight_factor * total_casualty_area

With weight_factor computed as:

0 *if* Energy
$$< \min WCA$$

$$0.5 - 0.5 \cos\left(\frac{\ln(Energy) - \ln(\min WCA)}{\ln(\max WCA) - \ln(\min WCA)}\right) \quad if \quad \min WCA \le Energy \le \max WCA$$

1 *if* Energ > max WCA

With "min WCA" and "max WCA" the values of the fields "Minimum/Maximum impact energy for weighted casualty area" defined in the "Models section" of the "Simulation Parameters" tab.

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 64/120	

7.5.1.7 Viewing area

The viewing area is in the right part of the interface. It is used to analyse the evolutions of the various parameters during the simulation. The results are presented in five types of predefined graphs that can be selected via a combo-box:

- altitude vs. time
- thermal mass vs. time
- thermal mass vs. altitude
- altitude vs. downrange
- temperature vs. time

Figure 42 Viewing area on the right

The user is also able to add/delete any other custom graphics to plot one of the available parameters against any other one. To add a new plot, once the button "add" is clicked, a new window appears where the user can choose the parameters to be plotted.

Figure 43 Creation of custom plot

To delete any custom graphic, one must only click on the "Delete" button after having selected the plot to be removed (please note that the five plots defined by default cannot be removed).

The user can additionally change the order of the axis of the selected plot by clicking on the "Invert" button:

Figure 44 Invert plot

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		BEBRISK	Version	2.22	Page: 66/120	

When there are too many objects in the simulation, it can be interesting to only view some of them in order to make the analysis easier. To do this, you must select these objects in the table on the left, right-click on one of the objects and click on "Plot selected objects". Only the objects that have been selected in the table are displayed in the graphic.

To make multiple selections, you can use the "CTRL" and "SHIFT" buttons on your keyboard. The selected lines will be coloured in blue.

Google-Earth view

Here-below is an example of simulation viewed in Google Earth.

To be able to view the results in Google Earth, you must save the simulation by clicking on the "Export" button, and then "KML", select the backup directory, the file name, and click on "save".

Finally, open Google Earth and open the file you just saved. In the top left-hand part, you can click on the second button to see the trajectory move.

You will then see that when an object is destroyed or reaches the ground, the 3D model of the object turns into a small yellow thumbtack. You can click on it to obtain more information on the end-of-flight of this object, as you can see on Figure 45.

The simulation made can also be saved by clicking on *File* and then on *Save*, and by selecting a backup name. This will save the list of objects, as well as the parameters of the scenario, making it possible to re-launch an identical simulation at a later stage.

Figure 45 Simulation viewed in Google Earth

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 68/120	

7.5.1.8 Message zone

The top area of the IHM contains a message zone where all the messages produced during the execution are displayed.

The contents of the message zone can be cleared using the "Clear" button.

The message zone will not be cleared when resetting the simulation or executing it again.

Each simulation has an independent message zone.

Figure 46: Message area

7.6 Materials

7.6.1.1 Materials file

An alternative location of the materials file can be specified by the user using the command line option:

--userMaterials <materials file path>

The option works both in batch mode and in MMI mode.

7.6.1.2 Integrated materials

A certain number of materials are created during the installation of Debrisk. You can choose among these materials every time you want to create or edit an object. A drop-down list containing all the materials is available.

Some materials are defined by default. They are displayed in purple, are named "xxx DEBRISK" and cannot be modified or removed.

7.6.1.3 Materials created by the user

If you wish to use a specific material not available as yet in DEBRISK, you can create it. To do so, you must click in the "Material" tab in the "Scenario" part, and then on the *Add* button.

When you wish to create a new material, you have two possibilities. Either you create it from scratch (by clicking directly on *Add*), or you derive it from an existing material by selecting a material and clicking on *Duplicate*. Either way, it is not possible to name the new material with a character string containing "Debrisk". When duplicating a "xxx DEBRISK" material, the oxidation properties are not duplicated, they are set to their default values.

The userMaterials file will not be automatically saved each time the property of a material is changed. The user can save the materials by using the "save materials" button. To create a totally new material, you must enter the following parameters:

- Name: material name
- Density: density of the material (in kg/m³)
- Melting Temperature: melting temperature (K)
- Heat Of Fusion: heat of fusion (J/kg)
- Oxide Heat Of Formation: oxidation flux (J/kg (O₂))
- Emissivity: emissivity

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		DEBRISK	Version	2.22	Page: 70/120	

• Heat Capacity: heat capacity (J/kg/°K),

For the first five parameters, you must enter a single value, which will be a character string for the name of the material, and numeric values for the density, the melting temperature, the heat of fusion and the oxide heat of formation. The name of the material created cannot contain the character string "debrisk".

If the material definition is invalid because some parameters are out of range an warning method will be displayed at the bottom of the window and if the user wants to apply the values a confirmation will be requested.

For the emissivity and the heat capacity, you can enter either a table of values according to the temperature or a polynomial (or a constant) representing this relationship.

Material properties				×
Name*:		MagnesiumA	Z31	
Density [kg / m3]* :		-1682.0		
Melting Temperature [K]* :		-868.0		
Heat Of Fusion [J / kg]* :		-339574.0		
Oxide Heat Of Formation [J	/ kg (O2)]* :	-1.0		
Emissivity* :				
1.0				
Heat Capacity [] / kg / K]*	:			
2.0				
Material warnings: Density [kg / m3]* : -1683 Heat Of Fusion [D / kg]* : Melting Temperature [K]* Oxide Heat Of Formation	2.000000 <= 0 -339574.0000 : -868.000000 [J / kg (O2)]* :	.000000 00 < 0.00000 <= 0.000000 -1.000000 <	0) 0.000000	
Apply	Can	el	Help	

Figure 47 Adding a customised material.

Apply va	lues? X
?	At least one of the material characteristics is invalid. If you apply these modifications, this material will be added to the material list. Do you want to continue ?
	Ves No

Figure 48: Confirmation dialog for invalid materials.

	CNES		Ref.	DBK-MU-LOG-0268-THA		
C	DEBRISK		Date	21/03/2025		
cnes		BEBBISK	Version	2.22	Page: 71/120	

If you wish to enter a table of values, select the "linear Interpolation" type in the window which opens (see Figure 49). The first number in each pair is the temperature, and the second corresponds to the value of the parameter you wish to define, i.e. in our example, the emissivity. In this mode, a straight line is drawn between each pair of value.

Specification of Emissivity		×
 Lin 	ear 🔿 Polynomial	
Temperature [K]	Emissivity	
500.0	0.244 +	
500.0	0.244 -	^
400.0	0.15 -	
300.0	0.122 -	
		~
Apply	Cancel Help	

Figure 49 Entry of a linear evaluation

If you prefer to use the polynomial form, you must specify the degree of the polynomial and provide the coefficients. If you enter only one coefficient, this means that the parameter is constant over the whole temperature range. In the example given above (see Figure 50), k is considered as constant and equal to 110, regardless of the temperature.

Specification of Emissivity	r			×
	OLinear	Polynomial		
Degre	e*:3		\sim	
f(T) =	1.0			
+	3.5		x	
+	4.6		x^2	
+	2.6		x^3	
	Apply Ca	ancel Help		

Figure 50 Entry of a polynomial

In both cases the emissivity and Cp will be evaluated in the temperature range (300K to melting temperature) in steps of 10 degrees to verify that:

THALES SERVICES NUMERIQUES
290 all Lac
31670 Labège

- The Cp is positive (≥ 0.0) in all the range.
- The emissivity is in the range [0,1] in all the range.

If this is not the case, an error message will be displayed, and it will not be possible to apply the changes to the material until the problem is corrected.

7.7 Shape of objects

The objects available in DEBRISK are described in this section. The objects are defined by their geometrical shape. The attitude of the object depends on its aerodynamic behaviour, on the forces applied on separation, on the position of the centre of gravity of the object, factors which are difficult to predict accurately. The use of external tools could be envisaged to guide the user in the choice to be made for each object. In the current version, all the objects are considered to be in tumbling attitude mode during their re-entry. The tumbling attitude of each object is defined by its shape and defined below in the corresponding section.

To choose the shape of the object, you must click and fill in the *shape* field in the "object properties" window.

Depending on the shape, you can select the set of dimensions to fill out. With these values the software will compute the rest of the dimensions.

The precision for the dimensions used to define a shape is 14 significant digits, the rest of the dimensions will be computed with the machine precision.

The same object defined using different sets of dimensions will produce two similar objects but not identical, so the results of the simulation may differ.

Scenario													
Entry conditions Object Simulation Parameters Material													
Add Edit Duplicate Delete Swap													
Spacecraft	1												
sphere_rout_rin	Name	Q	Shape	Material	Mass_th	R _{out} /Height	R _{in} /Width/	Length/R	Thickness	Angle	Flatness	CCond	
sphere_rout_mass							R.						
sphere_rout_thickness	Spacecraft	1	Cylinder	Aluminium DEBRISK	17891.7471533123	2.0	1.8	1.0	200.0				
sphere_rout_rin_solid	sphere_rout_rin	1	Sphere	Aluminium DEBRISK	344.619184306438	1.0	0.99	0.0	10.0				
sphere_mass_solid	sphere_rout_mass	1	Sphere	Aluminium DEBRISK	344.619184306438	1.0	0.99	0.0	10.0				
sphere_rout_solid	sphere_rout_thickness	1	Sphere	Aluminium DEBRISK	344.619184306438	1.0	0.99	0.0	10.0				
	sphere_rout_rin_solid	1	Sphere	Aluminium DEBRISK	344.619184306437	0.309687510288526	0.0	0.0	309.6875				
	sphere_mass_solid	1	Sphere	Aluminium DEBRISK	344.619184306438	0.309687510288526	0.0	0.0					
	sphere_rout_solid	1	Sphere	Aluminium DEBRISK	344.619184306437	0.309687510288526	0.0	0.0					

Scenario													
Entry conditions Object	Simulation Parameters	Mater	ial										
Add Edit Dupl	icate Delete S	wap											
Spacecraft sphere_rout_rin sphere_rout_mass	Name	۵	Demise altitude	Impact energy	ΣCasualty area	ΣWeighted CA	Cross section	End mass_a	lni mass_a	%Mass_a left	Max T	End T	End CCond
sphere_rout_thickness sphere_rout_rin_solid sphere_mass_solid sphere_rout_solid	Spacecraft	1	78000.0	0.0	0.0	0.0	9.425	0.0	10000.0	0.0	300.0	300.0	0.0
	sphere_rout_rin	1	0.0	1409950.002	5.608	5.608	3.126	260.2018	344.6192	75.5	775.0	691.4	0.0
	sphere_rout_mass	1	0.0	1409943.41	5.608	5.608	3.126	260.201	344.6192	75.5	775.0	691.4	0.0
	sphere_rout_thickness	1	0.0	1409950.002	5.608	5.608	3.126	260.2018	344.6192	75.5	775.0	691.4	0.0
	sphere_rout_rin_solid	1	0.0	872408 662	1.32	1.32	0.301	344.6192	344.6192	100.0	725.8	723.6	0.0
	sphere_mass_solid	1	0.0	8724021.541	1.32	1.32	0.301	344.6192	344.6192	100.0	725.8	723.6	0.0
	sphere rout solid	1	0.0	8724081.662	1.32	1.32	0.301	344.6192	344.6192	100.0	725.8	723.6	0.0
Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA								
------	---------	---------	---------	---------------	--------------								
	DEBRISK		Date	21/03/2025									
cnes		DEBRISK	Version	2.22	Page: 73/120								

Figure 51 Spheres defined using different methods, obtaining different results

7.7.1.1 Sphere

There is only one type of sphere, which is assumed to be in random tumbling mode around the three axes presented in the figure below.

Figure 52 Hollow sphere random tumbling.

Figure 53 Solid sphere random tumbling.

To create a spherical object, you can enter one of the following sets of parameters according to the selection made in the "specifications" field.

- For the hollow sphere:

- outer radius and inner radius
- outer radius and mass
- outer radius and thickness

- For the solid sphere:

- mass
- outer radius

The other parameters required for the calculation and not given by the user will be computed by the software. For example, if you choose to enter the outer and inner radii, the software will calculate the corresponding thickness and the mass according to the material selected.

7.7.1.2 Cylinder

The cylinder is considered to be in random tumbling mode as defined in Figure 54.

Figure 54 Hollow cylinder random tumbling

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
		DEBRISK	Version	2.22	Page: 76/120

Figure 55 Solid cylinder random tumbling

To create a cylinder, it is necessary to provide one of the sets of information bellow:

- Hollow cylinder:

- outer radius, inner radius and length
- outer radius, thickness and length
- outer radius, length and mass

- Solid cylinder:

• outer radius and mass

The other parameters required for the calculation are deduced by the software.

7.7.1.3 Box

The box is defined by the user by entering one of two following series of parameters:

- length, width, height, thickness
- length, width, height, mass

For a hollow box, both series can be used. For a solid box, use the < length, width, height, mass > series, having first calculated the mass by the volume x density.

Note: the length must be greater than the width and the width must be greater than the height.

The box is considered to be in random tumbling mode around its longest axis.

Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 78/120

7.7.1.4 Flat plate

The flat plate can be defined by the following parameters:

- length, width, thickness
- length, width, mass

Note: as the box, the length must be greater than the width and the width must be greater than the thickness.

Figure 57 Flat plate tumbling.

As the box, the flat plate is considered to be in random tumbling mode around its longest axis.

The thickness of the plate must be below 10% of the width. Otherwise, a box object must be used.

Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
cnes		BEBRISK	Version	2.22	Page: 79/120

7.7.1.5 Hemispherical cylinder

The hemispherical cylinder is considered to be in random tumbling mode as defined in Figure 58.

Figure 58 Hollow hemispherical cylinder random tumbling

To create a hemispherical cylinder, it is necessary to provide one of the sets of information bellow:

- Hollow hemispherical cylinder:

- outer radius, inner radius and length
- outer radius, thickness and length
- outer radius, length and mass

The other parameters required for the calculation are computed by the software.

The length and inner and outer diameter must be between 0 and 100m.

Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
cnes		BEBRISK	Version	2.22	Page: 80/120

7.7.1.6 Complex shape

The complex shapes are divided in to categories depending on the value of the flatness parameter:

- Conical
- Spherical

Complex shapes are defined by the following parameters:

- large radius, small radius, height, thickness, angle
- large radius, small radius, height, mass, angle

The angle of aperture of complex shapes can be between 0 and 360 degrees, for the range of angle values between (359, 360) the value of 359 will be used.

When defining a complex conical shape, tube equations will be used if all the following conditions are satisfied:

$$R_l = R_s$$

$$angle = 360.0^\circ$$

$$0.1 < \frac{e}{R_l} < 1.0$$

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
		DEBRISK	Version	2.22	Page: 81/120

7.7.1.6.1 Complex conical shape

Figure 59 Complex conical shape tumbling.

Figure 60 Complex conical shape profile.

The apothem of the conical shape is computed as follows:

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK	DEBRISK	Date	21/03/2025	
			Version	2.22	Page: 82/120

$$A = \sqrt{h^2 + \left(\frac{D_G - D_P}{2}\right)^2}$$

The angle $\boldsymbol{\eta}$ is defined as follows:

$$\cos\eta = \frac{h}{A}$$

The following constraints shall be respected by the shape to be considered valid:

$$R_l \ge R_s$$
$$R_l > e \cos \eta$$
$$h > 0$$
$$0 < e \le \frac{A}{10}$$

When the following conditions are fulfilled:

$$R_l == R_s$$

1. 0 > $\frac{e}{A}$ > 0. 1

the conical shape is modelled as a tube.

When

$$\frac{e}{A} \geq 1.0$$

an error is raised indicating the user that a cylinder shall be used to model the shape.

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
		DEBRISK	Version	2.22	Page: 83/120

7.7.1.6.2 Complex spherical shape

Figure 61 Complex spherical shape tumbling.

Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 84/120

Figure 62 Complex spherical shape profile.

The apothem of the conical shape is computed as follows:

$$A = \sqrt{h^2 + \left(\frac{D_G - D_P}{2}\right)^2}$$

The following constraints shall be respected by the shape to be considered valid:

$$R_{s} \ge 0$$

$$R_{l} \ge R_{s}$$

$$h > 0$$

$$h \le \frac{1}{2} \sqrt{\left(D_{g}\right)^{2} - \left(D_{P}\right)^{2}}$$

$$0 < e \le \frac{A}{10}$$

7.8 Heat flow

The absorbed radiation heat flow is assumed null at any altitude.

7.9 Oxidation flows

The heat and mass flow produced by the oxidation depends on the model used:

OxyV3

- ϑ_o : stoichiometric coefficient of the oxygen in the formed oxide
- $\vartheta_{\scriptscriptstyle M}$: stoichiometric coefficient of the metal alloy in the formed
- M_o : molar mass of the oxygen [kg mol⁻¹]
- M_M : molar mass of the metal alloy formed in the oxide [kg mol⁻¹]
- x_M : mass fraction of metal formed in the oxide
- $\Delta_f H^0$: molar standard formation enthalpy (<0) [J mol⁻¹]
- M_{MO_x} : molar mass of the oxide [kg mol⁻¹]
- ρ_0 : mass density of the alloy oxide [kg m⁻³]
- x_0 : thickness of the oxide layer [m]

$$\dot{q}_{ox} = -\frac{1 + \frac{\vartheta_O}{\vartheta_M} \frac{M_O}{M_M}}{1 + x_M \frac{\vartheta_O}{\vartheta_M} \frac{M_O}{M_M}} \frac{\Delta_f H^0}{M_{MOX}} x_M \rho_0 \frac{dx_0}{dt} = k_{ox} \frac{dx_0}{dt}$$

With

$$\frac{dx_0}{dt} = \frac{k'(T)}{x_0}$$

For adherent materials

$$\frac{dx_0}{dt} = k'(T)$$
 For non-adherent materials

And

$$k'(T) = A_w e^{-\frac{E_a}{k_B T}}$$

With $A_w(T)$ et $\frac{E_a}{k_B}(T)$ defined by the parameters Aw and Ea_kB of the material in the configuration file.

Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 86/120

The mass flow or ablation produced for non-adherent materials only is:

$$\dot{m}_{ob} = -\frac{1}{1 + \frac{\eta_0}{\eta_M} x_M \frac{M_0}{M_M}} \rho_0 \frac{dx_0}{dt} S_{exposed} = k_{oxMassFlowRate} \frac{dx_0}{dt} S_{exposed}$$

7.10 Survivability parameter

The survivability parameter is computed as follows:

$$< survivabilityParameter > = \frac{< demiseAltitude >}{< creationAltitude >} - \frac{< finalThermalMass >}{< initialThermalMass >}$$

7.11 Global results

Result computed globally – i.e. per DEBRISK simulation – are stored in the xml in the \langle globalResult \rangle tree. Those values are not meant to be accessed through the IHM.

7.11.1 Total casualty area

The total casualty area CA_{total} for a DEBRISK simulation is the sum, over all N objects reaching the ground, of the individual casualty area $CA_{frag}^{(i)}$ of each object, multiplied by its quantity or multiplicity q_i :

$$CA_{total} = \sum_{i=1}^{N} q_i * CA_{frag}^{(i)}$$

If the primary fragmentation is controlled by the total ablation of the parent vehicle and the conditions for complete ablation are <u>not</u> met, the total casualty area is the casualty area of the intact (not ablated) or partially ablated parent vehicle $CA_{S/C}$:

 CA_{total} (no vehicule primary fragmentation) = $CA_{S/C}$

Note: Unreleased (or unborn) fragments do not contribute to the casualty area.

7.11.2 Total impact mass

The total impact mass IM_{total} is the sum, over all N objects reaching the ground, of the final aerodynamic mass $IM_{frag}^{(i)}$ of each object, multiplied by its quantity or multiplicity q_i :

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
		DEBRISK	Version	2.22	Page: 87/120

$$IM_{total} = \sum_{i=1}^{N} q_i * IM_{frag}^{(i)}$$

If the primary fragmentation is controlled by the total ablation of the parent vehicle and the conditions for complete ablation are <u>not</u> met, the total impact mass corresponds to the aerodynamic mass of the intact (not ablated) or partially ablated parent vehicle $IM_{S/C}$:

$$IM_{total}$$
 (no vehicule primary fragmentation) = $IM_{S/C}$

Note: Unreleased (or unborn) fragments <u>do</u> contribute to the impact mass because their mass is included in the aerodynamic mass of their parent objects.

7.11.3 Total number of processed objects

This corresponds to the number of objects defined in the DEBRISK graphical interface, without considering their quantity. This includes the satellite, meaning there is one object per line in the DEBRISK UI. This value is useful for deriving the average computation time required for a DEBRISK simulation.

7.11.4 Total impacting number of fragments

If the satellite does not fragment: that value is 1. If the satellite gets fragmented: the value is the sum of the fragments impacting the ground. For example, an element that falls to the ground with 10 unborn (NC) objects inside will count as a single object impacting the ground.

7.11.5 Total survivability

DEBRISK computes the global survivability parameter, which is an indicator of the overall ablation rate of the vehicle. It is defined for the N debris that are exclusively one the two following cases:

- The satellite itself is not included in these N debris because it fragments. The case where the satellite does not undergo ablation is specified below.
- The offspring of non-ablated or partially ablated objects are not considered (objects marked as "NC" not calculated in the output).

The formula is:

$$Global_survivability_parameter = \frac{\sum_{i=1}^{N} q_i * Alt_{final,i}}{\sum_{i=1}^{N} q_i * Alt_{frag,i}} - \frac{\sum_{i=1}^{N} q_i * Mass_{final,i}^{th}}{\sum_{i=1}^{N} q_i * Mass_{init,i}^{th}}$$

With :

- *Alt_{final,i}* is the final altitude of the debris *i*,
- Alt_{frag.i} is the birth altitude of the debris *i*,
- Massth_{final.i} is the final thermal mass of the debris *i*,
- *Mass*th_{init,i} is the final thermal mass of the debris *i*,
- q_i is the multiplicity of the debris *i*.

Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 88/120

In the special event where the satellite does not fragment (the automatic fragmentation mode is activated), the final thermal mass is equal to the initial thermal mass, and the initial altitude is zero. Consequently, the global survivability parameter equals -1.

Note: The global survivability parameter has a minimum value of -1 when all components of the satellite reenter intact (i.e., not ablated). It reaches a maximum value of +1 when all components disappear immediately upon release. This makes it the inverse of a risk criterion.

7.11.6Total wall time

The real time required to complete the DEBRISK computation.

7.11.7 Total CPU time

The CPU time required to complete the DEBRISK computation.

7.11.8Fragmentation altitude

In the case of manual fragmentation (user-imposed), this is the fragmentation altitude specified as an entry in DEBRISK and is not strictly considered a Quantity of Interest (QoI). However, in the case of automatic fragmentation, it becomes an output for sensitivity analysis. In all cases, it is an output.

7.12 Normal shutdown

To shut down the DEBRISK software, use the "Quit" function in the main menu, accessible in the top left-hand corner.

File	Help		
	New	Ctrl+N	
	Open	Ctrl+0	
	Export		>
	Save	Ctrl+S	
	Save As	Ctrl+Shift+S	
	Quit	Ctrl+Q	

Figure 63 Closing the software.

If the results of any of the simulations defined have not been saved, a warning pop-up is displayed to the operator.

cnes	CNES		Ref.	DBK-MU-LOG-0268-THA	
	DEBRISK		Date	21/03/2025	
		DEBRISK	Version	2.22	Page: 89/120
		· · · · ·			

Scenario							
Entry conditions	Object	Simulation F	Parameters	Material			
			date UTC (1997-01-2	(yyyy-mm-dd) a 2	and hour (hh:m	m:ss)* :	00:00:00 韋
			position (E	ME2000)			
			Semi major	axis [km]*•		6085 862209908	
			Eccentricity Apogee alti Perigee alti Perigee arg Inclination a	*: Close the itude ? tude ? angle [?]*: *	The simulation ? The simulat Do you wan OK	ion has not been t to close the tab Cancel 94.537434867	saved.

Figure 64 Simulation not saved warning pop-up

8 Error situation

Section 9.3 describes the possible error messages in DEBRISK according to their location or reason for being displayed, as well as the procedure to be applied in these cases.

8.1 Recovery procedures

Similarly, section 9.3 describes the possible error messages in DEBRISK according to their location or reason for being displayed, as well as the procedure to be applied in these cases.

8.2 Java Virtual Machine (JVM) memory management

The maximum memory size that the JVM allows DEBRISK will depend on several issues, mostly on the operating system (OS).

In particular, on Windows 32 bits, the JVM limits the maximum memory size for DEBRIK to about 300 Megabytes. When this limit is reached, the garbage collector is triggered in order to try to free some memory, and the DEBRISK application is slowed down.

It's somehow possible to handle the JVM in terms of memory allocation, via the following parameters:

-Xmx<size>: It allows defining the maximum memory size of the JVM.

-Xms<size>: It allows defining the memory size that will be allocated on JVM start.

The size is defined with a value and the units. For instance, to launch DEBRISK on a Windows 32 bits machine with a memory size of one Gygabyte, the command line would be:

java -Xmx1024m -Xms1024m -jar debrisk.jar

	CNES	NES BRISK	Ref.	DBK-MU-LOG-0268-THA	
cnes	DEBRISK		Date	21/03/2025	
			Version	2.22	Page: 90/120

It's recommended to use the same value for the initially allocated memory (-Xms) and the maximum memory size (-Xmx). A minimum value of 1024m for both parameters is recommended when running on a Windows 32 bits architecture.

For further information on the management of memory by the JVM, please refer to the following link: <u>http://docs.oracle.com/cd/E19563-01/819-4438/gavou/index.html</u>

In order to monitor the current memory consumption, a dedicated area (called "Memory") has been included in the top for the main DEBRIK window. It is displayed in green when the consumed memory is below 75% of the available memory, in red if it is above 90% and orange otherwise.

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK	DEBRISK	Date	21/03/2025	
			Version	2.22	Page: 91/120

When passing the mouse over this area, dedicated information is shown:

Figure 65 Memory monitor

Information included in this area includes:

- Used Memory (%): percentage defining the used memory with respect to the maximum available one
- Maximum Memory: it is the maximum quantity of memory to be dedicated to the current process
- Allocated Memory: it is the memory that has been allocated by the program in current run
- Used Memory: it is the real memory currently being used
- Free Memory: it is the current free memory (difference between the allocated and the used memory)

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK	DEBRISK	Date	21/03/2025	
			Version	2.22	Page: 92/120

9 Reference manual

9.1 Introduction

Keyboard shortcuts in the main window can be used to access the different DEBRISK menus/options:

- ALT + F: pulls down the "File" menu
- CTRL + N: execution of the "New" menu
- CTRL + O: execution of the "Open" menu
- CTRL + S: execution of the "Save" menu
- CTRL + Q: execution of the "Quit" menu
- ALT + H: pulls down the "Help" menu
- F1: execution of the "Help-> Show help" menu
- CTRL + A: execution of the "Help->About" menu
- CTRL + W: closing of the active simulation tab

The following commands can be used in the window panes or forms:

- TAB: used to move from one field to the next
- Enter: is used to validate the form
- Esc: is used to close the current window pane
- F1: is used to display Help.

9.2 Definitions and operation of the monitor

The station must be equipped with a monitor with minimum resolution of 1280x1024.

9.3 Plate ablation

The ablation of the plate will be realised modifying the length and width of the plate but maintaining its thickness.

9.4 Error messages

If the input parameters are not conforming to the use of the software, an error message is displayed. Input parameters are expected in the following cases:

- Entry of initial conditions
- Creation of objects
- Creation of a new material
- Reading of an input file

In addition, messages of the "operation" type can also be displayed.

9.4.1 Error messages when entering the initial conditions

When a field is not correct, the following message is displayed:

Error in one of the input fields: <errorMessage>

<errorMessage> can be:

- The initial date is not correct
- Fragmentation altitude should be between 70 km and 100km
- The eccentricity cannot be negative
- \circ Inclination angle should be between 0° and 180°
- Impossible to create Orbit with these values

9.4.2 Error messages when creating an object

The creation of objects must be done according to certain rules (see chapter 7.5.1.3).

Failure to comply with these rules causes an error message in the input window as shown below:

cnes	CNES	DEBRISK	Ref.	DBK-MU-LOG-0268-THA	
	DEBRISK		Date	21/03/2025	
			Version	2.22	Page: 94/120

		_			
Name*:	Spacecraft				
Total mass of vehicle with SP [kg]*:	10000.0				
Object's quantity*:	1				
Shape:	Cylinder	~			
Specification:	hollow: outer radius [m],inner radius [m],length [m]	~			
Material:	Aluminium DEBRISK	~			
Outer radius [m]*:	2.0				
Inner radius [m]*:	-3.0				
Length [m]*:	1.0				
Conduction Coefficient [W/K]:	0.0				
۲.		>			
The inner radius cannot be negative The outer length should be larger than twice the thickness					
Apply Cancel Solar Par	Help 🗹 3D Active 🗌 Cut view				

Figure 66 Error message

These messages are either generic (independent of the shape of the object):

- "Object name shall not contain '#""
- "The volume cannot be negative"
- \circ "The mass should be > 1e-10."
- o "Invalid values found! <VALUES>."

This message means that the properties of the object are not physical. Here <VALUES> indicates the properties of the object so that the user can make the correction.

Depending on the shape of the object:

- Sphere:
 - "The inner radius cannot be negative."
 - "The outer radius cannot be negative."
 - "The inner radius cannot be larger than 100m."
 - "The outer radius cannot be larger than 100m."
 - "The outer radius cannot be smaller than inner radius"
 - "The mass cannot be negative"
 - "The thickness cannot be negative"
 - "Resulting inner radius (*<VALUE>*) cannot be negative"
 - "Resulting outer radius (%s) cannot be larger than 100m"
 - "The mass cannot be greater that the equivalent solid sphere (*<VALUE>* > *<VALUE>*)."

- Cylinder:
 - "The inner radius cannot be negative."
 - "The outer radius cannot be negative."
 - "The outer length cannot be negative."
 - "The inner radius cannot be larger than 100m."
 - "The outer radius cannot be larger than 100m."
 - "The outer length cannot be larger than 100m."
 - "The outer radius cannot be smaller than inner radius"
 - "The thickness cannot be negative"
 - "The mass cannot be negative"
 - "Resulting inner radius (*<VALUE>*) cannot be negative"
 - "Resulting thickness (*<VALUE>*) cannot be negative"
 - "The mass cannot be greater that the equivalent solid cylinder (*<VALUE>* > *<VALUE>*)."
 - "The outer length should be larger than twice the thickness"

- Box:
 - "The length should be larger than the width."
 - "The width should be larger than the height."
 - "The height should be larger than twice the thickness."
 - "The width cannot be negative."
 - "The mass cannot be negative"
 - "The thickness cannot be negative"
 - "The length cannot be negative."
 - "The height cannot be negative."
 - "The length cannot be larger than 100m."
 - "The width cannot be larger than 100m."
 - "The height cannot be larger than 100m."
 - \circ "The mass cannot be greater that the equivalent solid box (<VALUE>> <VALUE>)."
- Plate
 - "The width cannot be negative."
 - "The length cannot be negative."
 - "The thickness cannot be negative"
 - "The mass cannot be negative"
 - "The width cannot be larger than 100m."
 - "The length cannot be larger than 100m."
 - "The length should be larger than the width."
 - \circ "The thickness cannot be larger than 10% of the width. Please use a box instead."

- Complex
 - "The minor diameter cannot be negative"
 - "The major diameter cannot be negative"
 - "The height cannot be negative"
 - "The thickness (<VALUE> m) shall be less than 10.0% of the apothem (<VALUE> m)"
 - "The thickness cannot be larger than 100.0 mm"
 - "The mass (<VALUE> kg) cannot be negative";
 - "The height (<VALUE> m) cannot be larger than 100.0 m"
 - "The minor diameter cannot be larger than 100.0 m"
 - "The major diameter cannot be larger than 100.0 m"
 - "The volume (<VALUE> m3) shall be larger than 0 for complex shape"
 - "The angle (<VALUE> deg) shall be larger than 0"
 - "The angle (<VALUE> deg) cannot exceed 360.0 deg"
 - "The flatness (<VALUE>) shall be either 1 or 2 "
 - $\circ~$ " The major diameter (<VALUE> m) cannot be smaller than the minor diameter (<VALUE> m)"
- Complex spherical
 - "The combination of the small diameter and thickness is such that the internal minor diameter is negative"
 - $\circ \quad "h > sqrt(large_radius^2 small_radius^2) (<\!VALUE\!> > <\!VALUE\!>) [m] "$
- Complex conical
 - "The combination of the small diameter and thickness is such that the internal minor diameter is negative (<VALUE> m)"

- Tube
 - "The outer radius cannot be negative"
 - "The inner radius cannot be negative"
 - "The outer length cannot be negative"
 - "The outer radius cannot be larger than 100.0 m"
 - "The inner radius cannot be larger than 100.0 m"
 - \circ "The outer length cannot be larger than 100.0 m"
 - "The outer radius cannot be smaller than inner radius"

9.4.3 Error messages when creating a new material

💪 Material properties		×			
Name*:	test materia	1			
Density [kg / m3]* :	0.0				
Melting Temperature [K]* :	400.0				
Heat Of Fusion [J / kg]* :	-1.0				
Oxide Heat Of Formation [J / kg (C	02)]*: -1.0				
Emissivity*: -1.0 Heat Capacity [J / kg / K]*: 0.0 Material warnings: Density [kg / m3]*: 0.000000 <= 0.000000 Heat Of Fusion [J / kg]*: -1.000000 < 0.000000 Oxide Heat Of Formation [J / kg (O2)]*: -1.000000 < 0.000000 The emissivity is not always positive in the range 300.0K; 400.0K. The Cp is not always positive in the range 300.0K; 400.0K.					
Apply Cancel Help					

Figure 67 Entry of a user-defined material

If a mandatory field is not filled in, an error message is displayed:

"The following errors occurred:

<MSG>

You'll have to correct the errors before you can continue."

<MSG> can be:

- "A name should be specified"
- "This name already exists"
- "The density is not valid"
- "The melting temperature is not valid"
- "The heat of fusion is not valid"

- "The oxide heat of formation is not valid"
- "The emissivity is not valid"
- "The heat capacity is not valid"

If a negative emissivity or heat capacity is introduced by the user, the following error occurs:

"<MSG> Material Emissivity is not positive in all the temperature range."

If a negative heat capacity is introduced by the user, the following error is obtained:

"<MSG> Material Heat Capacity is not positive in all temperature range."

9.4.4 Error messages when reading an input file

If the format of the input file is not the expected format, an error message is displayed.

"<MSG> Check the log file for more details".

<MSG> depends on the exception type. The possible exceptions and the corresponding message are listed below:

- CVSFileException: "Error reading/writing CSV file: <ERROR> (<file_path>)"
- InvalidDasFileException: "This is not a valid DAS file (<file_path>). Operation aborted."
- InvalidDebriskDirectoryException: "The installation directory does not contain the necessary files. Please check the installation files and restart. Debrisk will quit now."
- InvalidUserMaterialFileException: "The user defined materials file is not valid (<file_path>). Operation aborted."
- InvalidXMLFileException: "This is not a valid Debrisk XML file (<file_path>). Operation aborted."
- KMLFileException: "Error reading/writing KML file: <ERROR> (<file_path>)"
- OrekitConversionException: "Cartesian conversion error. Operation aborted."
- OrekitNotInitializedException: "Orekit not initialised. Operation aborted."
- TecplotFileException: "Error reading/writing Tecplot file: <ERROR> (<file_path>)"
- XMLFileException: "Error reading/writing xml file: <ERROR> (<file_path>)"
- ZipFileException: "Error reading/writing zip file: <ERROR> (<file_path>)"

9.4.5 Operation error messages

• If the simulation exceeds 1000000 seconds, the following message is displayed:

"Simulation took more than the max duration (xxx s)."

• During an export, if the output file already exists but is not accessible (rights), the user is warned by the following message:

"The file to write to already exists but it cannot be deleted. Please check the permissions on this file and try again."

• When an attempt is made to import a simulation when the current tab already contains data, the following message is displayed, and the simulation is loaded in a new tab:

"Current tab already contains data; data will be stored in new tab."

• If the user tries to add an object at the root of the tree when a spacecraft already exists (there can only be one spacecraft), the following message is displayed:

"You can't add a spacecraft: please first select the spacecraft item in object list if you want to add children or edit the current spacecraft."

• If a simulation loaded from a file contains unknown materials, the following message is displayed:

"Cannot create material of type <MATERIAL_TYPE>.

Properties will be taken from titanium."

• When loading a DAS file, the following message may be displayed if certain materials are not recognised:

"DAS file contains n entries.

<NB> unknown materials found.

Please check your table for unknown materials,

They currently have the same thermal properties as Titanium."

• When a problem is detected during the propagation of an object, this object is shaded in the interface and the user is warned by the following message at the end of the simulation:

"The computation has ended but n object(s) could not be computed correctly.

These objects are indicated in grey."

Here, "n" indicates the number of objects in error.

To find out the details of the errors, the user must do an XML export ("save" option) and look up the file generated. This contains, for each calculated object ("<object>" tag), a "results" tag containing the calculation results for this object. Inside, a "<stopReason>" tag gives a description of the error which caused the simulation of this object to stop.

Errors of the "abnormal" type may also occur:

	CNES		Ref.	DBK-MU-LOG-0268-THA	
C	DEBRISK		Date	21/03/2025	
cnes		BEBRISK	Version	2.22	Page: 103/120

• If the user presses F1 to display Help and the user's manual has not been found in the DEBRISK installation directory, the following message is displayed:

"The document DBK-MU-LOG-0268-GMV.pdf could not be found. (Help unavailable)"

• If the files required for the operation of DEBRISK, and usually located in the directory containing the DEBRISK executable file, are not found, the following message is displayed:

"The installation files have not been found.

Those files should be in the directory where the debrisk.jar is installed.

In your case this is <installationDirectory>

For the current execution only, you'll be asked to select the directory where the installation files are located."

Messages of the "internal" type may also be displayed: They start with "Internal error" and indicate a malfunction of the application (case not managed by the application).

Confirmation messages can also be displayed if the program has to delete or replace an existing file.

cnes	CNES		Ref.	DBK-MU-LOG-02	268-THA
	DEBRISK	DEBRISK	Date	21/03/2025	
			Version	2.22	Page: 104/120

9.5 3D View configuration

The 3D view configuration colours can be configured by the user through the *dirPath.properties* file that is located in the installation directory after loading or saving a configuration.

The 3D view is activated by default, if the program does not work correctly using the 3D view (graphic card problem, etc) the 3D view can be deactivated manually by editing the *dirPath.properties* manually and setting the value of the property *isUse3DActivated* to *false*.

The following values can be modified to configure the 3D view:

Кеу	Value	Range
isUse3DActivated	Selects if the 3D View is active	[true, false]
view3D.backgroundRed	Background red channel value	[0.0, 1.0]
view3D.backgroundGreen	Background green channel value	[0.0, 1.0]
view3D.backgroundBlue	Background blue channel value	[0.0, 1.0]
view3D.outerSurfaceRed	Shape's outer surface red channel	[0.0, 1.0]
view3D.outerSurfaceGreen	Shape's outer surface green channel	[0.0, 1.0]
view3D.outerSurfaceBlue	Shape's outer surface blue channel	[0.0, 1.0]
view3D.outerSurfaceAlpha	Shape's outer surface alpha channel	[0.0, 1.0]
view3D.innerSurfaceRed	Shape's inner surface red channel	[0.0, 1.0]
view3D.innerSurfaceGreen	Shape's inner surface green channel	[0.0, 1.0]
view3D.innerSurfaceBlue	Shape's inner surface blue channel	[0.0, 1.0]
view3D.innerSurfaceAlpha	Shape's inner surface alpha channel	[0.0, 1.0]
view3D.borderSurfaceRed	Shape's border surface red channel	[0.0, 1.0]
view3D.borderSurfaceGreen	Shape's border surface green channel	[0.0, 1.0]
view3D.borderSurfaceBlue	Shape's border surface blue channel	[0.0, 1.0]
view3D.borderSurfaceAlpha	Shape's border surface alpha channel	[0.0, 1.0]
view3D.complexBorderSurfaceRed	Complex shape's border surface red channel	[0.0, 1.0]
view3D.complexBorderSurfaceGreen	Complex shape's border surface green channel	[0.0, 1.0]
view3D.complexBorderSurfaceBlue	Complex shape's border surface blue channel	[0.0, 1.0]
view3D.complexBorderSurfaceAlpha	Complex shape's border surface alpha channel	[0.0, 1.0]

The other values in the *dirPath.properties file* are managed internally by *DEBRISK* and shall not be modified.

	CNES	Ref.	DBK-MU-LOG-0268-THA		
cnes	DEBRISK		Date	21/03/2025	
		DEBRISK	Version	2.22	Page: 105/120

9.6

	CNES	DEBRISK	Ref.	DBK-MU-LOG-0268-THA	
cnes	DEBRISK		Date	21/03/2025	
			Version	2.22	Page: 106/120

10 Tutorial

10.1 Introduction

The purpose of this part is describing briefly the general operation of DEBRISK; it proposes a typical case of object creation and the creation of result files.

10.2 Starting up

File	Help	
	New	Ctrl+N
	Open	Ctrl+0
	Export	>
	Save	Ctrl+S
	Save As	Ctrl+Shift+S
	Quit	Ctrl+Q

Figure 68 Menu

The following functions can be accessed from the \underline{File} menu, in the top left-hand corner of the screen:

"New": this creates a new tab in which you can create or open a new case to be studied.

"Open": is used to open a previously saved study case.

"Export": is used to export files to other software packages (Tecplot, Google Earth, CSV).

The *Tecplot*, *Google Earth* and *CSV* files will be encoded following the UTF-8 format. Hence, in order to be able to read it properly, you must use a text editor compatible with UTF-8 (such as notepad++, for instance).

If we want to import the file in Excel or any other program, you must indicate during this process that the file is encoded in UTF-8 format. The parameters contained in these files are detailed below:

	CNES	DEBRISK	Ref.	DBK-MU-LOG-0268-THA	
cnes	DEBRISK		Date	21/03/2025	
			Version	2.22	Page: 107/120

- CSV file

The CSV file contains a header with the name, date of creation, version of DEBRISK and mode (SCI or LOS). This header is then followed by the data:

Parameter	Units
Parent id	
Id	
Name	
Quantity	
Shape	
Material	
Initial altitude(m)	m
Initial mass(kg)	kg
Rout/Height(m)	m
Rin/Width/Rsmall(m)	m
Length/Rlarge(m)	m
Thickness(m)	m
Angle(deg)	deg
Cb_intial(kg/m2)	kg/m2
Stop reason	
Demise altitude(m)	m
Impact mass(kg)	kg
Final Rout/Height(m)	m
Final Rin/Width/Rsmall(m)	m
Final Length/Rlarge(m)	m
Final Thickness(m)	m
Final angle(deg)	deg
Cb_onGround(kg/m2)	kg/m2
Impact energy(J)	J
Cross section area(m2)	m2
Total casualty area(m2)	m2

	CNES	DEBRISK	Ref.	DBK-MU-LOG-0268-THA	
cnes	DEBRISK		Date	21/03/2025	
			Version	2.22	Page: 108/120

Parameter	Units
Weighted casualty area(m2)	m2
Initial CCond(W/K)	W/K
Final CCond(W/K)	W/K
End temperature(K)	Κ
Max temperature(K)	Κ

- Tecplot file

The first lines of the Tecplot contain the name, date of creation, version of DEBRISK and mode (SCI or LOS). Then, the Tecplot files contains the following data:

Parameter	Units
time(s)	s
altitude(m)	m
longitude(deg)	deg
latitude(deg)	deg
azimuth(deg)	deg
velocity(m/s)	m/s
velocityInertial(m/s)	m/s
acceleration(m/s2)	m/s2
flowRate(kg/s)	kg/s
downRange(km)	km
localDownRange(km)	km
downRangeShortest(km)	km
FPA(deg)	deg
extTemperature(K)	K
extDensity(kg/m3)	kg/m3
extPressure(Pa)	Ра
Mach	

	Ref.	DBK-MU-LOG-02	268-THA
	Date	21/03/2025	
DEBRISK	Version	2.22	Page: 109/120

Parameter	Units
Knudsen	
aerodynamicMass(kg)	kg
thermalMass(kg)	kg
kineticEnergy(J)	J
referenceAeroArea(m2)	m2
referenceThermalArea(m2)	m2
radiationArea(m2)	m2
outerArea(m2)	m2
wallTemperature(K)	Κ
Cd	
dragForce(N)	М
ballisticCoefficient(kg/m2)	kg/m2
QconvColdWall(W/m2)	W/m2
Qconv(W/m2)	W/m2
Qoxidation(W/m2)	W/m2
QradGain(W/m2)	W/m2
QradLoss(W/m2)	W/m2
Qcond(W)	W
Qnet(W/m2)	W/m2

"Save": is used to save the case being studied by including the list of objects and the initial conditions.

"Save As": is unsed to save the case being studied under another name.

"Quit": is used to close the software.

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 110/120

Entry conditions:

ntry conditions Object	Simulation Parameters Material		
	Date UTC (yyyy-mm-dd) and hour (hh:m	m:ss)* :	
	2012-01-01	00	:00:00 🛨
	Position (EME2000) Input method :	Apogee / Perigee	~
	Semi major axis [km]* :	6494.65355	
	Eccentricity* :	0.00175298	
	Apogee altitude [km]* :	127.902087780079	
	Perigee altitude [km]* :	105.132092219921	
	Inclination angle [°]* :	96.574	
	Perigee argument [°]* :	75.522	
	Right ascension of ascending node [°]*	344.698	
	True v anomaly [°]* :	260.408	
	Earth equatorial radius [km] :	6378.13646	
		Import TLE	

Figure 69 Entry conditions

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 111/120

10.2.1 Scenario area

You will find various tabs in this area. The first one, named "Entry conditions", must be filled in with the general parameters of the entry point corresponding to the kinematic conditions of the spacecraft to be studied. The parameters to be entered are the parameters of the Keplerian orbit of the spacecraft object.

10.2.1.1 Object tab

The object tab allows you to add new objects using the *Add* button, to edit some objects already created using the *Edit* button, to duplicate objects using the *Duplicate* button or to delete others using the *Delete* button.

When clicking on "Duplicate", the whole group of children, grandchildren... of the selected object will also be duplicated.

In the left part, you can see a tree representing the overall structure of the case you are about to simulate. The indentation of the elements in this tree shows the parent-child links existing between the different objects.

To add an object, select a parent object in the tree or the table and click on the *Add* button. A new window is displayed.

net × DEBRIS	2023-28-01 2023-28-01 2023-28-01 2023-28-01 2023-28-01 2023-28-01	5 150205096 INFO Processing objects 5 150205096 INFO Processing objects 150205097 More Processing objects 150205098 INFO Processing objects 1502050910 INFO Processing objects 15020505101 INFO Processing objects 15020505101 INFO Processing objects 15020505010 INFO Processing objects 150205050000000000000000000000000000000	cc processor cc gladeau sup cc gladeau cc gl				1 Visualisation	
Add Edit Duo	Simulation Parameters	s Material Swap					Add Delete Invert	
- Structure - Structure - Structure - Structure - HRG - CUIR -	Hame Reproduced Sectors Reproduced Sectors Income Income Produced Sectors Produced Sectors Produced Sectors Produced Sectors Reproduced Sectors Re	Colpect properties Parent: Itame*: Italianes Italianes Sepecification: Material: Code or adua (m)*: Length (m)*: Length (m)*: Conductor Coefficient (WKR): Uluse Separation Temperature Separation Temperature:	Root Object ITS-UGM Child 1 Cplinder Mammine 0:1245 0:130 0:330 0:3 0:3 0:3 0:3 0:3 0:3	Colject: cy outer rad inner rad iength volume	Inder flat ends - random tumbli Ins [ms] 0.1245 Ins [ms] 0.1245 Ins [ms] 0.1245 Ins [ms] 0.438 Ins [ms] 0.438 Ins [ms] 0.0048364095308941	rg thi det	classa [mm] 11.9 ss_i [Ve] 13.62(05734141) mitry [Rgm1] 2700.9	
	mass_a: 18090.6562 mass_c: 15039.5089 gs_num: 0 gs_mass:	Apply Cancel Help 0.0 kg gs_surface: 0.0 m*2	30 Active Cut view				Zoom Level: 100.0	

Figure 70 Creating an object.

Ċ	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 112/120

In this window, you are asked to enter the following elements:

- object name
- Relationship. This parameter allows to define if the new object is a standard "child" or a "component" of the parent object.
- Quantity of fragments. This parameter is used when the operator wants to define several fragments with the exact same characteristics. Even if Q>1, a single simulation will be run for the fragment. This value will only be used to compute the aerodynamic mass of an object having children with Q/=1 and for the casualty area (which will be computed as the casualty area of the simulated fragment multiplied by Q).
- selection of the object shape
- selection of the mode for entry of the dimensions of the object according to the data at your disposal. All the other data will be calculated by DEBRISK so that they correspond to the data provided by the user.
- The material of the object to be selected in the list.
- Dimensions to be complemented according to the mode selected beforehand.
- Conduction coefficient.

Please note that the first object in the list is <u>always</u> a spacecraft, while the others are always fragments.

Solar panels can be added on the spacecraft object, modelled only by a box, a cylinder or a sphere, using the "solar panels" button, which is only displayed on the window for this object.

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 113/120

10.2.1.2 Materials tab

In the materials tab, you will find the properties of the various materials used in the simulation. This includes the following parameters for each material:

- density in kg/m^3
- heat of fusion in J/kg
- melting temperature in K
- oxidation heat in J/kg (O₂₎

10.2.1.3 Viewing area

The viewing area is in the right part of the interface. It is used to analyse the evolutions of the various parameters during the simulation. The results are presented in five types of predefined graphs:

- altitude vs. time
- thermal mass vs. time
- thermal mass vs. altitude
- altitude vs. downrange
- temperature vs. time

In the table on the left, the columns have been modified to present a summary of the state at the end of the simulation for each object. We then find:

- the quantity of fragments
- the object destruction altitude: the cell is coloured in red if the object is not destroyed, and in green if it does not reach the ground. In case of error during the calculation, this cell is shaded (see §9.3).
- the energy on impact: the cell is coloured in red if the energy on impact is higher than 14J, in yellow if it is lower or equal, or in green if the object does not reach the ground. In case of error during the calculation, this cell is shaded (see §9.3).

- the casualty area in the case of an object which reaches the ground (sum of all the fragments • if the quantity is > 1).
- The initial aerodynamic mass •
- the final aerodynamic mass
- the percentage of aerodynamic mass left
- maximum surface used for the calculation of the casualty area
- the maximum temperature •

the final temperature •

The user can switch between the views of the object panel (before/after execution) by clicking on the "Swap" button.

Ety conditions Object Sim	ulation Paramete	rs M	/laterial										
Add Edit Duplic	ate Deleta	e	Swap										
Spacecraft ⊡…child 1 single child 1-1 single	Name	c) Shape	Material	Mass_th	R _{out} /Hei	ight R _{in} /Width	n/R _s Length	/R _I Thicknes	s Angle	Flatne	ss C	Cond
😑 child 1 mult	Spacecraft	1	Box	AA7075	4.96086E-4	0.005	0.005	0.01	1.0			0.0)
	child 1 single	1	Sphere	MagnesiumHK31A	7514.6896273867	8 1.0	0.0	0.0	1000.0			0.0)
	child 1-1 single	1	Sphere	Titanium	497628.27632862	3 3.0	0.0	0.0	3000.0			0.0)
	child 1 mult	2	Sphere	MagnesiumHK31A	7514.6896273867	8 1.0	0.0	0.0	1000.0			0.0)
	child 1-1 mult	3	Sphere	Titanium	497628.27632862	3 3.0	0.0	0.0	3000.0			0.0)
anario													
enario ntry conditions Object Simul	ation Parameters	Ma	terial										
enario ntry conditions Object Simul Add Edit Duplica	ation Parameters	Ma	terial Swap										
enario htry conditions Object Simul Add Edit Duplica sceca aft - child 1 single - child 1 - 1 single	ation Parameters	Q	terial Swap Demise altitude	Impact energy	ΣCasualty area	ΣWeighted CA	Cross section area	End mass_a	Ini mass_a	%Mass_a left	Max T	End T	End CCond
enario htry conditions Object Simul Add Edit Duplica scecraft -child 1 single -child 1-1 single -child 1-1 single	ation Parameters Delete Name Spacecraft	Mar Q	terial Swap Demise altitude 78000.0	Impact energy 0.0	ΣCasualty area	ΣWeighted CA 0.0	Cross section area 0.0	End mass_a 0.0	Ini mass_a 1906243.0245	%Mass_a left 0.0	Max T 300.0	End T 300.0	End CCond 0.0
Add Edit Duplica Contractions Object Simul Add Edit Duplica Contraction Contrection Contrac	ation Parameters Delete Name Spacecraft child 1 single	Q 1	terial Swap Demise altitude 78000.0 0.0	Impact energy 0.0 9:0859827806730148	ΣCasualty area 0.0 12 0.711	ΣWeighted CA 0.0 0.711	Cross section area 0.0 0.059	End mass_a 0.0 497647.332	Ini mass_a 1906243.0245 505142.966	%Mass_a left 0.0 98.52	Max T 300.0 877.0	End T 300.0 877.0	End CCond 0.0
enario htry conditions Object Simul Add Edit Duplica Seconoft - child1single - child1-1 single - child1-1 mult	ation Parameters Delete Name Spacecraft child1 single child1-1 single	Ma Q 1 1	terial Swap Demise altitude 78000.0 0.0 NC	Impact energy 0.0 9.0839527506730146 NC	ΣCasualty area 0.0 12 0.711 0.0	ΣWeighted CA 0.0 0.711 0.0	Cross section area 0.0 0.059 28.274	End mass_a 0.0 497647.332 0.0	Ini mass_a 1906243.0245 505142.966 497628.2763	%Mass_a left 98.52 0.0	Max T 300.0 877.0 300.0	End T 300.0 877.0 0.0	End CCond 0.0 0.0 0.0
enario htry conditions Object Simul Add Edit Duplical accoraft - child 1 single - child 1 - 1 single - child 1 - 1 mult	ation Parameters Delete Name Spacecraft child 1 single child 1 nult	Ma Q 1 1 2	terial Swap Demise altitude 78000.0 0.0 NC 5533.29	Impact energy 9.0839827806730146 NC 0.0	ΣCasualty area 0.0 12 0.711 0.0 0.0	ΣWeighted CA 0.0 0.711 0.0 0.0	Cross section area 0.059 28.274 0.0	End mass_a 0.0 497647.332 0.0 0.0	Ini mass_a 1906243.0245 505142.966 497628.2763 1500399.5186	%Mass_a left 98.52 0.0 0.0	Max T 300.0 877.0 300.0 877.0	End T 300.0 877.0 0.0 877.0	End CCond 0.0 0.0 0.0 0.0

Figure 71 Swap objects table view

	CNES		Ref.	DBK-MU-LOG-02	268-THA
C	DEBRISK		Date	21/03/2025	
cnes		DEBRISK	Version	2.22	Page: 115/120

Below the objects table we will find an entry where the total casualty area (corresponding to the addition of the casualty area of all the fragments) will be displayed, the value will only be displayed when an execution has been done and removed when the simulation is reset:

Children	1	0.0	300.000	2.391
∧ servoirs	1	22155.64	0.0	0.0
<	_			
Total Casual Total Weight	ty Ar ed C	ea: 54.224 n asualty Area	12 : 48.547 m2	2

10.3 Using the software for a typical task

10.3.1 Creation of a simulation and result files

From the *File* menu, in the top left-hand corner of the screen, click on the "New" tab: this creates a new tab in which you can create or open a new case to be studied.

File	Help									
	New	Ctrl+N								
	Open	Ctrl+0	ŀ							
	Export		>							
	Save	Ctrl+S								
	Save As	Ctrl+Shift+S								
	Quit	Ctrl+Q								

Figure 73 Menu

You will find various tabs in this area. The first one, named "Entry conditions", must be filled in with the general parameters of the entry point corresponding to the kinematic conditions of the spacecraft to be studied. The parameters to be entered are the parameters of the Keplerian orbit of the spacecraft object.

Entry conditions	Object	Simulation Parameters Material		
		Date UTC (yyyy-mm-dd) and hour (hh:	mm:ss)* :	
		2012-01-01	00:00:00	¢
		Position (EME2000)		
		Input method :	Apogee / Perigee	\sim
		Semi major axis [km]* :	6488.13646	
		Eccentricity*:	0.0	
		Apogee altitude [km]* :	110.0	
		Perigee altitude [km]* :	110.0	
		Inclination angle [°]* :	0.0	
		Perigee argument [°]* :	0	
		Right ascension of ascending node [°]	*:0.0	
		True v anomaly [°]* :	0.0	
		Earth equatorial radius [km] :	6378.13646	
			Import TLE	

Figure 74 Entry conditions

Click on the *object* tab, and then on the *Add* button; a new window is displayed:

Object properties												×
Name":	Spacecraft		Object: cylind	ler flat	ends - random tumblin	ng						
Total mass of vehicle with SP [kg]*:	1000.0		outer radius	[m]:	1.0					1		
Object's quantity*:	1		inner radius	[m]:	0.999		thickness	[mm]:	1.0		*	
Shape:	Cylinder	~	length	[m]:	2.0		mass_t	[kg]:	52.1610740371806		hum	and a
Specification:	hollow: outer radius [m],thickness [m],length [m]	~	volume	rm ³ 1	0.0188307126488017		density	[kg/m ³]:	2770.0			and a second
Material:	Aluminium DEBRISK	~		լայ						-	unge	Gev .
Outer radius [m]*:	1.0											
Thickness [mm]*:	1.0											
Length [m]*:	2.0											
Conduction Coefficient [W/K]:												
¢		>										
Apply Cancel Solar Par	nels Help 🗹 3D Active 🗌 Cut view										Zoom Level: 10	00.0

Figure 75 Creating a spacecraft.

- Enter the outer radius, for example 1m.
- Enter the thickness of the cylinder, for example 1mm
- Enter the length, for example 2m
- Enter the aerodynamic mass, for example 1000kg

Press "apply", and then again on the *object* tab, and on the *Add* button to create a child object.

Object properties									×
Parent:	Spacecraft	6	Object: spher	e					
Name*:	child	1	outer radius	[m]	1.0	thickness	[mm]	1000.0	\$ ²
Relationship:	child ~		inner radius	[m]:	0.0	mass t	[ka]:	11602 0488672583	7000
Object's quantity*:	1		miler radius	2	4.10070020470620	duncing	3	2770.0	
Shape:	Sphere ~		voiume	[m~]:	4.18879020478039	density	[kg/m~]:	2770.0	¥
Specification:	hollow: outer radius [m],inner radius [m] 🗸 🗸 🗸								Air Flow tour mine
Material:	Aluminium DEBRISK ~								
Outer radius [m]*:	1.0		•						
Inner radius [m]*:	0.5								
Conduction Coefficient [W/K]:									
Use Separation Temperature									
Separation Temperature:	573.0								
L		ľ							
Apply Cancel Help	SD Active Cut view								Zoom Level: 100.0

Figure 76 Creating a child object.

- Enter the outer radius, for example 1m.
- Enter the inner radius, for example 0.5m.

	CNES		Ref.	DBK-MU-LOG-02	268-THA	
cnes	DEBRISK	DEBRISK	Date	21/03/2025		
			Version	2.22	Page: 119/120	

Then press "apply"

Figure 77 Results and viewing area.

Press "Run" to launch the simulation; you will see a graph displayed in the right part of the screen.

To save the simulation, different formats are available (Flat XML, Tecplot, Kml, CSV). To create one of these files, click on the File menu in the top left hand corner of the screen, click on the "Export" tab and select the desired format. It is possible to save all files at once by clicking on the "Zip" tab.

Name the file, then using the drop-down menu, choose the folder where you want to save the file. Note that the folder proposed by default is the last one used in DEBRISK.

Press "Save" to save the file in the folder you have chosen.

During the export of the file, the following pop-up will be displayed (a similar pop-up window is shown whatever the exported file is):

Figure 78 Export file pop-up

The flatXML, KML and XML file will be encoded following the UTF-8 format. Hence, in order to be able to read it properly, you must use a text editor compatible with UTF-8 (such as notepad++, for instance).

If we want to import the file in Excel, you must indicate during this process that the file is encoded in UTF-8 format.

Text Import Wizard - Step 1 of 3	?	x
The Text Wizard has determined that your data is Delimited.		
If this is correct, choose Next, or choose the data type that best describes your data.		
Original data type		
Choose the file type that best describes your data: 		
◎ Fixed width - Fields are aligned in columns with spaces between each field.		
Start import at row: 1		•
Preview of file C:\DATA\workspace\DEBRISK\val_test\nrt_test\nr_004\ref\DEB_result		
<pre>1 #NomFormeNombreMatériauW_y/DL_xH_zMasseCbsMasse_ablatAc_ablatC 2 Structurecylinderlautre1.831.9013493.028135230797013493.02813523 3 Eqmt sAlcatelparallelepipedlautre0.78536194389745730.7853619438974 4 MTS-UPMcylinderlautre0.240482265858378370.3884822658583783031.5433 5 HRGcylinderlautre0.92507023734664622.38507023734664570356.91239050</pre>	57	* •
<		P.
Cancel < Back <u>N</u> ext >	Ein	nish

Figure 79 Importing a file encoded following the UTF-8 format in Excel