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INTRODUCTION

The MAGLIB software results from our forty-year experience in mission analysis and
geophysics software for magnetospheric projects as well as personal research on charged
particle motion and quantitative magnetic field modeling. In the early times, (Araks I & 1I,
1972), the main demand was a correct description of the near Earth magnetic field. We used
the external magnetic field model of Roederer and Sauer based on two dipoles to obtain the
conjugacy in the northern hemisphere for the rockets launched in the Kerguelen islands. The
results were very rough but showed both the diurnal and the seasonal motion of the conjugate
points. The same model was used for Geos 1. The partial failure of the launch of Geos I by a
Mc Donnell Douglas Thor Delta rocket led W.P. Olson of the same Company to offer us an
advanced model as a compensation in 1974. This model was used for mission analysis and
projects like Geos II, Sambo, Arcade3 and Viking (French experiments). The version in our
hands was limited to distances less than 15 Re in the night side but gave reasonable
excursions of the conjugate points for a-synchronous spacecraft. All these low-altitude
spacecraft (we consider the synchronous altitude as near-Earth compared to the size of the
Magnetosphere) were not very demanding in terms of software: calculation of the
geomagnetic local time, calculation of the Mc Ilwain L, etc. With Interball and its auroral and
eccentric probes, a great step was accomplished. It was necessary to use more accurate
external magnetic field models with a realistic topology of the field lines in the tail region.
This was achieved with the Tsyganenko models (1982, 1987 and 1989). These models were
incorporated in the software. It was also necessary to take into account the crossing of the
Magnetopause and to avoid any calculation involving the magnetic field outside the
Magnetosphere. The eccentric Interball spacecraft with a 200000. km apogee crossed different
magnetospheric regions, radiation belts, aurora oval, polar cap, Magnetosheath, Neutral Sheet:
adequate routines were developed to define the boundaries of these regions. This software
paved the way to the development of an interactive calculation and visualization tool, the
OCGM, which also incorporated sophisticated orbit extrapolation. A further step was
accomplished for the Cluster project with the calculation of the distances to the different
boundaries, spacecraft speed in various coordinate systems and a variable Solar Wind velocity
inducing a variable subsolar distance. In between we finally clarified the mysterious corrected
geomagnetic coordinates (mysterious only for the low latitude Space physicist!) and added the
calculation of the eccentered-tilted dipole. Unfortunately all the mysteries have not been
solved. Among these, the absence of a renewed B, L coordinates system, the present one
being defined for an internal geomagnetic field of the early sixties. Also the comparison of
observations labeled in geophysical coordinates of same L. and MLT separated by a fifteen-
year interval. For Geos I we were very active finding some reasonable magnetospheric model.
Later studies (Kosik, 1983) showed that during quiet times a tilted dipole proved sufficient,
the ring current giving axisymmetric results for the synchronous altitude. The continuous
advance in the knowledge of the Magnetosphere as well as the improvement of the models
will lead to further modifications of this library, not to mention future interplanetary missions
to Jupiter or lo. For the immediate needs the library contains about 160 routines. The routines
have been divided into 9 sections. The first section contains the initialization routines to be
called before any geophysical calculation or after a time update. The coordinate
transformations form the second chapter. The regions and boundaries are described in the



third chapter. The section on models comprises internal and external magnetic field models.
In this section all the DGRF internal field models since 1945 have been included.

To avoid errors the internal magnetic field is calculated with two types of routines where the
coefficients are stored differently. The comparison of the results thus guarantees the correct
use of the coefficients. For the external models, model Kosik 99 has been added, its field line
topology being a good compromise between the fast Tsyganenko 87, 89 models and the more
precise but time consuming Tsyganenko 96. The calculation of the geomagnetic local time
and of the Mc Ilwain L parameter are in the geophysics calculations chapter. The calculations
of the geomagnetic local time or the tilt angle require the knowledge of the Sun position and
of the Greenwich Meridian with respect to an inertial coordinate system. These calculations
and related subjects form the core of the astronomical and celestial mechanics chapter. Basic
mathematical routines such as matrix multiplication or determination of roots are in the
mathematics chapter. Time and date calculations, transformations between julian and
gregorian dates are collected in one chapter, the date calculations. Finally to avoid
unnecessary headaches caused by stupid results whose origin lie in a wrong choice of
parameters a series of control routines have been developed and form the control routines
chapter. The whole set of routines represents 24000 lines of documented fortran77. The
software was carefully tested and set to quality standards by Michel Lagreca and Suzanne Le
Guillou from CS-SI. In a separate volume a series of user routines give practical examples of
calculations by combining the elementary bricks of the library. Finally a third volume will
contain the physics and the corresponding mathematical equations. In 2000 an HTML version
should be available offering a hypertext search of the type of calculation in its three aspects:
the physics and the mathematics, the basic routine and the example. This work has benefited
from the interaction with numerous Space physicists involved both in the projects and
fundamental research. We particularly acknowledge Roger Gendrin for his encouragement
and support during two decades.

In this chapter we review the different coordinate systems in use in magnetospheric physics:
geocentric inertial, geocentric, solar ecliptic, geomagnetic or dipolar, solar magnetic, solar
magnetospheric and the aberrated or Solar Wind coordinate system.

Version 2.0

In this new version, the coefficients of the internal magnetic field models have been updated
and the IGRF 2005 introduced.

A paragraph has been added about the applications of the Galperin L parameter and its
connection to quantitative mathematical models.

Version 2.1

In version 2.1 the "Tables of Internal Magnetic Field Coefficients" paragraph has been
rearranged for the sake of readability. The fact that the most recent set of coefficients is
provisory is also clearly indicated

In paragraph 7.4 “The Galperin L Parameter”, it has been added a reference to a publication
by J.C. Kosik

Version 3.0

In this new version, the coefficients of the internal magnetic field models have been updated
and the IGRF 2010 introduced.

Version 4.0



In this new version, the coefficients of the internal magnetic field models have been updated
and the IGRF-12 model for 2015 introduced.

Version 5.0
In this new version, the coefficients of the internal magnetic field models have been updated
and the IGRF-13 model for 2020 introduced.



1. COORDINATE TRANSFORMATIONS

1.1 THE GEOCENTRIC INERTIAL COORDINATE SYSTEM

This coordinate system is defined in the following way:

- The origin O is at the barycenter of the Earth.

- Z1 axis is along the Celestial Poles axis.

- XI axis is in the Equator and points towards the Vernal Point defined as the intersection
of the Ecliptic and Equator great circles.

- Y1 axis is defined through the cross product ZI x XI.

Equator

Figure 1

1.2 THE GEOCENTRIC TERRESTRIAL SYSTEM

The geocentric coordinate system is not inertial and rotates with the Earth. It is defined in the
following way:

- The origin O is at the center of the Earth.

- ZG axis is along the Celestial Poles axis.

- XG@ axis is in the Equator and the plane OXZ contains the Greenwich Meridian.
- YG axis is defined through the cross product ZG x XG.

The Greenwich Meridian is defined by the right ascension of Greenwich. The right ascension
is counted from the Vernal Point and positive eastwards.
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XI YG

Figure 2

The transformation matrix from the geocentric inertial frame of reference to the geocentric
frame of reference is:

cosa, sma; 0
RIG=|-sina; cosa; O
0 0 1

The transpose matrix RGI transforms the geocentric components of a vector into the
geocentric inertial components. Matrices RIG (R for rotation, I for inertial, G for geocentric)
and RGI are obtained with routine roig. The transformation of the coordinates and velocity
components of a spacecraft from the inertial coordinate system to the geocentric coordinate
system is performed in pvig.

1.3 THE SOLAR ECLIPTIC COORDINATE SYSTEM

In the Solar Ecliptic coordinate system the ZSE axis is along the Ecliptic Pole direction Q and
the XSE axis points towards the Sun. The angle between ZSE and ZI axes is the obliquity of
the Ecliptic with respect to the Equator. The YSE axis is defined by the cross, product
ZSE x XSE. The position of the Sun along the Ecliptic is defined by its longitude L. The Sun
longitude is calculated in the routine SUN. The transformation of the components of a vector
from the geocentric inertial system into the solar ecliptic system GSE is obtained by the
products of two transformations: a rotation around the XI inertial axis by &, then a rotation
around the ZSE axis by an angle L:

[MIE]:[ML][Mg]



Ecliptic

Equator
XI
Figure 3
The matrices are defined as follows:
1 0 0 coslL sinL O
[M.]=|0 cose sine [M,]=|-sinL cosL 0
0 —sing cose 0 0 1

The product of these two matrices gives matrix RISE (R for rotation, I for inertial, SE for
solar ecliptic).

cosl cosegsinl singsinl
[RISE]=| —sinL cosecosL sinscosL
0 —sing Ccos&

The matrix transformation from the solar ecliptic frame of reference to the inertial frame of
reference is RSEI, and the transpose matrix is RISE. These matrices are calculated in the
subroutine roise (contraction of rotation from inertial to solar ecliptic).

To transform a vector from the geocentric into the solar scliptic coordinate system it is
necessary to apply the transformation from geocentric to inertial than the transformation from
inertial to solar ecliptic. The transformation matrix is called RGSE.

[RGSE]|=[RISE][RGI]

cosa,cosL+sina,cosesinL —sina, cosL +cosa,cosesin L singsin L
[RGSE]=| - cosa, sin L +sina, cosscosL  sina, sin L +cosa, cosgcosL  singcosL
—sinag sing —singcosa cos¢

The matrix RSEG transforms a vector from the solar ecliptic coordinate system into the
geocentric coordinate system and is the transpose matrix of RGSE. These matrices are
calculated in routine rogse (contraction of rotation from geocentric to solar-ecliptic). Routine
geose transforms the geocentric components of a vector into solar-ecliptic components.
Routine segeo performs the opposite transformation.



1.4 THE GEOMAGNETIC OR TILTED DIPOLE COORDINATE
SYSTEM

The geomagnetic coordinate system is derived from the geocentric coordinate system by two

transformations:

- A rotation of angle ¢4 around the axis Zg in the anticlockwise sense which transforms the

triedron OXgYgZg into the triedron OX1Y1Z1.

- A rotation of angle 04 around axis Y1 in the southward direction which transforms
OX1Y1Z1 into the final frame of reference OXdYdZd. The values of 64 and @q are
obtained with the first three harmonics of the Earth geomagnetic potential (cf. chapter on

Internal Magnetic Field).

Figure 4

We obtain the transformation matrices:

[ cosp, sing, 0
[M(p]: —sing, cosep, O
0 0 1

cosfd, 0 —sind,
and [M,]=| 0 1 0
| sind, 0 cosd,




The final transformation matrix RGDIP is the product of these two matrices:

[RGDIP)=[M,]|M, |

cosd,cosp, cosl,singp, —sind,
[RGDIP]=| —sing, cosQ, 0

sin@, cosep, sinf,sing, cosb,

The matrix RGDIP and its transpose RDIPG (matrix transformation from dipole to
geocentric) are calculated in the routine rogdip. Routine geodip transforms the geocentric
components of a vector into dipolar components. Routine dipgeo performs the opposite
transformation.

1.5 THE SOLAR MAGNETIC COORDINATE SYSTEM

The solar magnetic coordinate system can be deduced from the geomagnetic coordinate
system by a single rotation about Zd axis. The Xsm axis is located in the meridian plane
which contains the Sun direction:

Ysm

Sun direction

Figure 5

The calculation of the transformation matrix implies the knowledge of the geomagnetic
longitude of the Sun. This geomagnetic longitude can be calculated from the position of the
Sun in the geocentric frame of reference and using the transformation matrix RGDIP. The
routine SUN gives the right ascension ¢, and the declination ¢, of the Sun. With matrices RIG
and RGDIR the geomagnetic coordinates Xas, Yds, Zds of the Sun are obtained:

Xy COSO, cosa,
Y, |=[RGDIP][RIG]| cosd,sina,
st sin 5?



From Xds, Yds, Zds we get the geomagnetic longitude ¢, and the geomagnetic latitude A, of
the Sun. The angle A, is also the tilt angle and called T. The transformation matrix RDSM
from the dipole system to the solar magnetic system is simply:

cosp, sing, 0
[RDSM]=|-singp, cosp, O
0 0 1

Finally the transformation matrix RGSM from the geocentric coordinate system to the solar
magnetic coordinate system is the product of two matrices:

[RGSM|=[RDSM][RGDIP]

The transformation matrix RGSM (Rotation from Geocentric to Solar Magnetic) and the
transpose matrix RSMG (Rotation from Solar Magnetic to Geocentric) are calculated in the
routine rogsm. Routine geosm transforms the geocentric components of a vector into solar
magnetic components. Routine smgeo performs the opposite transformation.

1.6 THE SOLAR MAGNETOSPHERIC COORDINATES

The solar magnetospheric frame of reference is deduced from the solar magnetic coordinate
system through a rotation about Ysm axis. Xgsm axis points towards the Sun. Ygsm axis is
along Ysm axis. The Zgsm axis forms a right-handed frame of reference with the other two
axes. The amount of rotation is defined by the angle U counted positive from Zsm towards
Xsm (figure 6). The matrix transformation RSMGSM is defined simply as:

cosU —simnU 0
[RSMGSM]=|sinU  cosU 0
0 0 1

However U is opposite to the geomagnetic latitude of the Sun A,.. We apply the previous
matrix and the relation U = - A, in our software.
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Figure 6

The matrix transformation RSMGSM and its transpose RGSMSM are calculated in the
routine ROSMGS. The routine geogsm transforms the geocentric components of a vector into
solar magnetospheric components. The routine gsmgeo performs the opposite transformation.

1.7 THE TILT ANGLET

The TILT angle T is also the geomagnetic latitude of the Sun. The tilt angle is therefore
negative around the Winter Solstice and positive around the Summer Solstice. The tilt angle is
calculated in the routines inigeo1 (Cluster), inigeom (Geolib), inigeomv (from 1945 to 2000).

1.8 THE SOLAR WIND COORDINATE SYSTEM

The geocentric Solar Wind coordinate system can be deduced from the geocentric solar
ecliptic coordinate system through a rotation of angle A. This rotation takes into account the
angle between the Solar Wind direction and the direction of the SUN. This angle also called
ABERRATION originates in the orbital motion of the Earth around the Sun. In a frame of
reference linked to the Earth a Solar Wind particle will be closer to the Z axis and have a
tilted trajectory with respect to the Sun direction (figure 7). The angle A can be calculated. As

the Solar Wind velocity, around 400 km/s is much greater than the Earth velocity, 30 km/s we
have:

J e

Sw

which gives A around 4°.
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Solar Wind Particle at t0 (P) and t1 (Q) in the moving frame
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Figure 7

The geocentric Solar Wind coordinate system can be deduced from the geocentric solar
ecliptic coordinate system through a rotation A:

N
>

Figure 8§

The matrix transformation from solar ecliptic components to Solar Wind components is:

X, cosdA smd 0| X,
YA =|-sind cosd O YE where A = - 4°
Z, 0 0 1} 2,

The transformation of solar ecliptic components of a vector into Solar Wind components is
performed in aberrm.



1.9 CLASSICAL VERIFICATIONS

Many errors can occur in the mathematical calculation of the matrices as well as in the
software. It is not always obvious to find the errors but in some cases a frame of reference
differs from another frame of reference by a rotation along one of the axes. As a consequence
the components of the vector along this rotation axis must remain the same. From the
previous paragraphs one must have:

Zd (component along the dipole) = Zsm (Z component in the solar magnetic frame)

Ygsm (solar magnetospheric) = Ysm (solar magnetic)

Za (aberrated solar ecliptic) = Ze (non aberrated solar ecliptic)
REFERENCES

Ref. 1 C. Russel: Geophysical Coordinates Transformations, Cosmic Electrodynamics,

1971, 2, 184-186, D. Reidel Publishing Company

12



2. BOUNDARIES AND REGIONS

2.1 INTRODUCTION

The Magnetosphere can be defined as the location where the Solar Wind interacts with the
Earth's magnetic field. The Solar Wind is a plasma with an average velocity of 400 km/s
which compresses the magnetic field into a cometary shape. The diameter of this comet is
about 60 earth radii and the tail extends over several hundred earth radii.

Tail, Diameter 60 Re, Length > 200 Re
Earth

=

Figure 1

The distant regions are shown in the following figure.

o ——
—_——
—
—_——
—

—

Magnetosheath

Magnetopause

Auroral

Polar Cap Oval Radiation Belt Plasma Sheet

- N
N _ >
/

Neutral Sheet

Figure 2

The subsolar point is approximately at 10 Re and is also the intersection of the Magnetopause
with the Earth-Sun line. Along this same line the Bow-Shock is encountered at 15 Re. In a
meridian plane perpendicular to the Sun Earth line the Magnetopause is encountered at 15 Re
and the Bow-Shock is encountered at 20 Re.

13



Near the Earth we have several regions:

- The Radiation Belt which can be split into two belts: an Inner Belt bounded by a dipolar
shell extending up to 3.5 Re in the equatorial plane and an Outer Belt bounded by a
dipolar shell which extends up to 6. Re in the equatorial plane. The Inner Belt is the most
"energetic" with protons of MeV energies.

- The Plasmasphere.

- The north and south Auroral Ovals where Auroras are observed.

- The Diffuse Auroral Region.

- The Cusp where magnetic field lines originating from the Magnetopause concentrate
when they reach the Earth.

Outer Belt

Inner Belt

Figure 3
For the mathematical definition of the regions we have chosen two approaches:

- Near the Earth where the magnetic field is less sensitive to external perturbations the
regions are defined by their L-shell boundaries

- In the outer regions where the magnetic field is sensitive to the Solar Wind conditions we
have chosen a probabilistic approach. The Magnetopause and the Bow-Shock were given
a certain thickness. When the indicator is 1 it simply means that the probability for the
spacecraft to encounter the Magnetopause (or the Bow-Shock) is high. When the
indicator is 0 the probability to encounter the boundary is small.

2.2 THE RADIATION BELT

The Radiation Belt is defined by its outermost boundary. This outer boundary is defined by
the apex of the dipole field line (L = 6). The lower boundary is defined by a sphere of radius
1.16 Re. The Radiation Belt is divided into two belts. An Inner Belt with high energy particles
confined to a L shell (L = 3.5). An Outer Belt of low energy particles extending further out to
the L shell (L = 6).

14



The L shell is defined by the following equation:

r=Lsin’ @

for

Figure 4

routine rbelt calculates if the spacecraft is inside the Van Allen radiation belt region.

2.3 THE PLASMASPHERE

We use the model of Chappell et al. (Ref. 2). In this model the Plasmasphere intersects the
equatorial plane in approximately circular contour. For each local time the contour is defined
by the apex of the dipole magnetic field line L according to Table I:

TABLE I
TGL |0Oh 1h 2h 3h 4h 5h 6h 7h 8h %h 10h |11h
L 4.1 4.1 42 (42 4.1 4 4 4 4 4 4.15 |4.3
TGL |12h [13h [14h [I5h |16h |17h [18h [19h [20h |21h |22h |23h
L 45 (46 |48 |52 6.1 6.7 |68 6.6 |6. 54 148 |44

The routine chapel determines if the spacecraft is inside the Plasmasphere. Routine chapp2

calculates the dipole field line L value of the Plasmasphere boundary for a given MLT.

2.4 THE AURORAL OVAL

We use the model of Feldstein (Ref. 5) for a moderate geomagnetic activity. The Auroral
Oval is defined by its poleward and equatorward boundaries. For each local time the boundary

is defined by two colatitudes according to the formulae:
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Oy = Ay (k)+ Ay (k) cos (t + Ay (k))
05 = Als(k)+ Ay (k)cos(t + Ay (k))

Figure 5

Auroral Oval

The routine oval calculates if the spacecraft is inside the Auroral Oval region.

2.5 THE POLAR CAP

The Polar Cap is defined by its boundary which is the northern boundary of the Auroral Oval.
The routine calpol calculates if the spacecraft is inside the Polar Cap region.

2.6 THE DIFFUSE AURORAL REGION

The Diffuse Auroral region has been defined according to the work of Gussenhoven et al.
(Ref. 6). For the boundary we have chosen an average geomagnetic activity level, Kp = 3. The
invariant latitude of the northern boundary is given as a function of the geomagnetic local

time in Table II:

TABLE II

MLT |0-1 -2 12-3 134 (45 |56 |[6-7

7-8

8-9

9-10

10-11

11-12

A, [60.13]60.45]61.39|62.33|63.26 |62.19 |62.50

63.17

63.69

64.43

65.27

66.35

MLT [12-13|13-14[14-15]15-16[16-17]17-18 [ 18-19

19-20

20-21

21-22

22-23

23-24

A, |66.88(67.41|67.94|68.47|67.76 |67.17 |65.98

64.91

63.73

63.02

62.56

61.59

This table has been obtained from Table 2 of Gussenhoven et al. using the formula:
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A=A, +aKp

The northern boundary of the Diffuse Auroral region is also the southern boundary of the
Auroral Oval. The routine gussen calculates if the spacecraft is inside this region.

2.7 THE CUSP

We have chosen the following definition:

A point belongs to the Cusp region if its conjugate on ground is located between meridians 8h
MLT and 16h MLT and parallels of 75°, 80° geomagnetic latitude. The routine cusp
calculates if the spacecraft is inside the Cusp region.

2.8 THE NEUTRAL SHEET

Fairfield (Ref. 4) has defined a simple model of a wharped Neutral Sheet. The Neutral Sheet
is located in the tail beyond a circle of radius H, sin y, where H, is the hinging distance and y
is the tilt angle. For a given solar magnetospheric Y coordinate the location &. of the Neutral
Sheet above the solar magnetospheric equatorial plane is:

Y
2 .
52_[(H0+D)(1_YA2J =D |sin y for Y <Y,

and

52 Z—DSil’l)( for Y>Y

o

We have H,=10.5Re, D=14 Re, Y,=22 R..

The shape and the location of the Neutral Sheet are shown in the following figures. We have
chosen a thickness of 1 Re for the Neutral Sheet. The routine posns developed for the
CLUSTER experiment Whisper calculates the distance to the Neutral Sheet. Routine posnsh
developed for INTERBALL calculates the distance to the Neutral Sheet and indicates if the
spacecraft is in the Neutral Sheet region, assuming a thickness of 1 Re for this region.
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Figure 6

/ Tail boundary

Plasma Sheet upper boundary

Neutral Sheet

Plasma Sheet lower boundary

Figure 7

18



2.9 THE PLASMA SHEET

We define the Plasma Sheet with respect to the Neutral Sheet. If Z,; is the location of a point
of the Neutral Sheet the locations of the upper and lower boundaries of the Plasma Sheet are
given by the following formulae:

Zpsy =Zys T |YGSM| +b
Zpg =Zys —a |YGSM| - b
Where Z,q, Z, are respectively the Z coordinate of the upper and lower boundaries of the

Plasma Sheet. We have chosen a1 = 0.186 and b1 = 3. The routine pospsh calculates if the
spacecraft is inside the Plasma Sheet (INTERBALL).

2.10 THE MAGNETOPAUSE

We use the Sibeck model (Ref. 7). The shape of the Magnetopause is given in an
axisymmetric coordinate system in the Solar Wind coordinate system:

R+ Ax*+Bx+C=0

where R is the radius vector to the surface and perpendicular to the x axis. 4, B, C are
constants which depend on the Solar Wind pressure. These constants are given in Table III:

TABLE III
Pressure A B C T
0.54-0.87nPa 0.19 19.3 2724 12.6
0.87-1.47nPa 0.19 18.7 -243.9 11.7
1.47-2.60nPa 0.14 18.2 -217.2 11.0
2.60-4.90nPa 0.15 17.3 -187.4 10.0
4.90-9.90nPa 0.18 14.2 -139.2 8.8

For the probabilistic approach we have chosen two boundaries or two subsolar distances
r,=11.7 and r,= 10.0 for the INTERBALL project. We have the two equations:

—

R+ A(4)x+B(4)x+C(4)=P,
R*+ A2+ B2 +C(2)=P,
The spacecraft is inside the Magnetosphere when P; < 0. The spacecraft crosses the
Magnetopause when P> <0 and P1 > 0. The spacecraft is in the Solar Wind when P> > 0. The

routine mpsib calculates if the spacecraft is in the Sibeck Magnetopause region
(INTERBALL).
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2.11 THE SHABANSKY MAGNETOPAUSE:

The Shabansky Magnetopause is an axisymmetric paraboloid (Ref. 1):

Z
A

e

o
A
e
N
\>y

Figure 8

The surface of this paraboloid is given by the equation:

2
X '02:1
R, 2R,

Where R, is the subsolar distance and p is the axial distance
pl=y+z
From the definition we get:
p= IR, -R,)
A point (x, y, z) is in the Shabansky Magnetosphere if it satisfies the two conditions:

x<R, and Jyi+z7 < p(x)

The routine mpause calculates if a point if a point is inside or outside the Magnetosphere.
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2.12 THE BOW-SHOCK

The Bow-Shock model is taken from Fairfield (Ref. 3). The Bow-Shock surface is defined in
a Solar Wind coordinate system, i.e., a solar ecliptic system corrected from Aberration. The
surface equation is:

Y+ Axy +Bx* +Cy+Dx+ E=0

where x is the Solar Wind coordinate in the Sun direction and y is the radial coordinate. The
Bow-Shock is axisymmetric. The coefficients given by his Table II are:

A=0.0296, B=-0.0381,C=-1.280, D =45.644, E =—652.10

The above equation can be simplified by a rotation U. We introduce the new coordinates X, Y
in the following way:

x| [cosU —sinU || X
y “|sinU  cosU || ¥
The surface equation can be rewritten as:

X? (sin2 U+Bcos> U+A sinUcosU)+ Y? (0052 U+Bsin>* U-A sinUcosU)

+XY(2sinUcosU—ZBsinUcosU—Asin2 U+Acos’ U)+ X (CsinU + DcosU)
+Y(CcosU-DsinU)+ E=0

We choose U in order to cancel the XY term. We get:
tan2U = A
B-1

We get U =-0°.817
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After the rotation performed for the Aberration a second rotation U is thus performed as
shown below:

>
>

figure (a) figure (b)

U is counted positive in a rotation from x to y. U =-0.°817 corresponds to figure
Figure 9
We can write the last equation as:
AX*+BY +CY+DX+E =0

where
A, =sin’U + Bcos” U + AsinU cosU

B, =cos’ U+ Bsin’ U — AsinU cosU
C.=CcosU —-DsinU

D =CsinU+ DcosU

E =E

The constants 4,, B,, C,, D, can be calculated. We obtain:

A =-0.03811, B =1.000211, C.=-0.62933, D =45.657607, E =-652.1
The aberrated coefficients are calculated in the routine aberrm.
The equation above can be simplified further, dividing by B, we obtain the equation:

AX*+Y'+D X+E =0

2
Where An :é’ Yn :Y+lga Dn :Dr9 En :Er _lcg
B 2B B B 4B
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We make the following approximation:

An :Ar’ Dn :Dr’ En;Er_in;Ei

For convenience in the calculations we also set Y, = ¥, which induces a systematic error of 0.3
Re in Y. The Bow-Shock general equation can be deduced as it has now axial symmetry:

AX*+R°+D X+E =0
with R? = Y + 72

In the INTERBALL we introduce a probabilistic approach in the following way. We define a
cubic volume around the spacecraft location:

Xin=X-1 Yin=Y -1 Zin=7-1
Xout=X+1 Yout=Y +1 Zout=7+1

We have two equations:

An Xzi +Yzj +Dn Xin +En :E
A X2 +Y: +D X, +E =F,

out out out

If F> <0 the spacecraft has not yet encountered the Bow-Shock. If /1 <0 and F> > 0 the
spacecraft will probably encounter the Bow-Shock. If | > 0 the spacecraft has probably
crossed the Bow-Shock and is in the Solar Wind. These calculations are performed in bwshff.
For CLUSTER we don't use a probabilistic approach.

2.13 SIMILARITIES BETWEEN THE EQUATIONS OF THE TWO
SURFACES

From the previous paragraphs we infer that the Magnetopause and the Bow-Shock have more
or less the same shape. If we adopt a common general equation we can write for the shape of
any of the two surfaces:

P +axp+bx’ +cp+di+e=0

The constant for the two surfaces are given in the following Table:

Constant Magnetopause Bow-Shock Term
a 0. 0.0296 xp

b 0.14 -0.0381 x°

c 0. -1.280 P

d 18.2 45.644 X

e -217.2 -652.10

For the Magnetopause we have chosen the constants for moderate Solar Wind conditions. For
the Bow-Shock the constants were taken in Ref 7.
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2.14 INTRODUCING THE DISPLACEMENT OF THE BOW-SHOCK

As suggested by J.C. Trotignon for CLUSTER project we define the subsolar distance of the
Bow-Shock as a function of the subsolar distance of the Magnetopause according to formula:

. =r /0.726

For simplicity we consider a pure parabolic surface for the Magnetopause for the
determination of some constants. The equation for this Magnetopause surface is:

p=pyx,—x

We have p=25.5 for x =0 and p =0 for x = 14.46. We get easily p = 6.706.
From the preceding equation we can derive the constant e:

P +p x—p x,=0
The constant e = - P xo thus e = - (r,,) x 45.

We summarize the results for various Solar Wind conditions. We give the index isw = 1 for
very quiet Solar Wind and isw = 5 for very disturbed conditions. Results are shown in the
Table below:

isw 1 2 3 4 5

7, 8.8 10.0 11.0 11.7 12.6
v, 12.12 13.77 15.15 16.11 17.3
e, 545.4 619.65 681.75 724.95 778.5

The other constants have not been changed.

2.15 THE MAGNETOSHEATH

It is the region between the Bow-Shock and the Magnetopause. From the equations written
previously a probabilistic approach is taken for INTERBALL and a deterministic approach is
taken in CLUSTER. For INTERBALL the Magnetosheath region corresponds to P> > 0
(spacecraft out of the Magnetopause) and to > < 0 (Bow-Shock not yet crossed by the
spacecraft). The routine msheath for INTERBALL calculates if the spacecraft is inside the
Magnetosheath region or inside the Bow-Shock region or inside the Magnetosphere. For
CLUSTER another solution has been found which implies the calculation the distance of the
spacecraft to the different boundaries. When the spacecraft is between the boundary and the
Earth the distance is set negative. It is positive otherwise. Thus the spacecraft inside the
Magnetosheath corresponds to a positive distance to the Magnetopause and a negative
distance to the Bow-Shock.
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2.16 THE SOLAR WIND

For INTERBALL the spacecraft is in the Solar Wind when F > 0. For CLUSTER the
distance to the Bow-Shock must be positive. The routine bwshff determines if the spacecraft
is in the Solar Wind region (INTERBALL).

2.17 THE MAGNETOPAUSE MODEL OF SHABANSKY AND THE
FIELD LINE ESCAPE

For some external magnetic field models field lines can escape in the day side of the
Magnetosphere. It is necessary to stop the field line tracing in this case and a routine check is
introduced at each step of the field line calculation. We have introduced the simple
Magnetopause mlodel of Alekseev and Shabansky described earlier. The distance of a point
of the Shabansky Magnetopause to the x axis is given by:

pmp = Vzrb (Vb_X)

where 7, is set to 10 or 11 Re for convenience. When for a point (x, y, z) of the field line the
condition p > p,, is fulfilled the calculation is stopped (p=+/y> +2°).

2.18 THE SHADE OF THE EARTH

It is sometimes useful to know if the spacecraft is in the Shade of the Earth or not. The routine
cahsl calculates this possibility.

Figure 10

The position of the Sun is given by its celestial coordinates ae, do. The position of the
spacecraft is given by its celestial coordinates ¢, J. The position of the anti-Sun is given by
the celestial coordinates: ., &, where a, = a® + 7, O, = - Oe.
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It is possible to calculate the spherical angle u between the axis of the umbra cylinder and the
direction of the spacecraft:

cosu =sin &, sin 5, + cos S, cosJ cos(ag—a,)

The distance of the spacecraft to the umbra cylinder is therefore A = r cosu. If A < R, and
u < 7/ 2 the spacecraft is inside the Shade of the Earth. In the other case it is outside

2.19 THE MAGNETOSPHERE AS A UNIQUE ENVIRONMENT

In this chapter we have considered all the regions encompassed by a high excentricity
spacecraft such as the TAIL probe of INTERBALL project. It is tempting to assemble all
these parts into one general routine which can give for any position of the spacecraft the
related magnetospheric region. This routine, posmag, was developed for INTERBALL. This
routine can associate an index 0 or 1 to any of the 15 regions of the Magnetosphere, besides
other calculations (L, MLT,.....).
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3. DISTANCES TO THE BOUNDARIES

3.1 INTRODUCTION

For the CLUSTER project and the Whisper Experiment we have developed a series of
routines which calculate the distances to the boundaries. These boundaries depend on the
Solar Wind pressure (Bow-Shock, Magnetopause) or not (Plasmapause). Except for the
distance to the Neutral Sheet we have calculated the distance to the boundary as the minimum
distance between a spacecraft location and the surface.

3.2 DISTANCES TO THE MAGNETOPAUSE AND THE BOW-
SHOCK

These two boundaries are paraboloids. The equation of the surface is defined as:
Ax*+p*+Dx+E, =0 (1)

Where 4,, D,, E, are obtained in the Solar Wind coordinate system. Taking into account the
axial symmetry, the distance between the spacecraft and a point on the surface is:

d>=(p-p) +(x-x) ()

where (x1, p1) are the coordinates of the spacecraft. We define the distance as the minimum of
d. taking the derivative with respect to x we get:

o p—p)p+x-x) _ 3
Jio-p) +x-x) ®)

The derivative p' can be obtained from equation (1):

. D +24x
pl=——"" 4)
2p

Inserting this result in the previous equation we get:
2p(x—x,)= (o= p)(D,r+24,x)=0 5)
p can be extracted from (1) and equation (5) can be rewritten as:

A x2 + plz(Dn+2Anx)
’ [2(x - xl )7 (Dn + 2Anx)]

~+D,x+E, =0 (6)
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This equation can be solved numerically. The distances are counted positive if the surface is
between the spacecraft and the Earth and negative if the spacecraft is located between the
surface and the Earth. The distance to the Magnetopause or the Bow-Shock is calculated in
the routine caldis for the CLUSTER project, and the intensity of the Solar Wind is taken into
account. It is also possible to calculate the distance to the Shabansky Magnetopause parabola
using the cardan algorithm to obtain the roots of a third degree equation. The calculations are
performed in routine ddparab.

3.3 DISTANCE TO THE NEUTRAL SHEET
The Neutral Sheet position has been defined using the formulae of Fairfield (Ch 2, Ref 4). To

locate the spacecraft with respect to the Neutral Sheet we define the distance of the spacecraft
to the Neutral Sheet as:

d=zgsm-z, (7

where zgsm is calculated in the GSM coordinate system and z,,, is the z coordinate of the
Neutral Sheet at point xgsm, ygsm:

Figure 1

The distance is counted positive when the spacecraft is above the Neutral Sheet and the
distance is counted negative below. The calculation is done in routine posns (CLUSTER) and
in routine posnsh (INTERBALL).
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3.4 DISTANCE TO THE PLASMA SHEET

The distance to the Plasma Sheet for CLUSTER uses the model developed for INTERBALL
where we were interested only in verifying if the spacecraft was in the region:

/ Tail boundary

Plasma Sheet upper boundary

Neutral Sheet

Plasma Sheet lower boundary

Figure 2

The upper and lower boundaries of the Plasma Sheet were defined by the following equations:

Zpsy =Zys +a |YGSM| +b,
Lpg =Zys —a |YGSM|_b1

For CLUSTER the distance to the northern boundary of the Plasma Sheet is defined as:
dzpshn =7y — 7 »g,

The distance to the southern boundary of the Plasma Sheet is defined as:
dzpshs =Z, —Z

These calculations are performed in routine posps.

29



3.5 DISTANCE TO THE PLASMAPAUSE

The Plasmasphere boundary has been defined by Chappell (Ref. 1) as a distorted shell where
the field line parameter L is local time dependent. The shape of the Plasmapause is a
continuum of dipole field lines of various L. For a given spacecraft location xgsm, ygsm, zgsm
and a given Epoch (U.T.) it is possible to calculate the magnetic local time of the spacecratft.
From Table II in the previous chapter it is possible to calculate the L parameter of the
corresponding field line by interpolation between two nearby local times. Once L is obtained
the distance d can be calculated.

(r;,0)

(r, 6)

\

Figure 3

The distance d between the spacecraft located in (71, 61) and the Plasmapause is obtained for
the point (», ) which corresponds to d minimum:

d>=r* + 17 = 2rr, cos(6-6,) (8)

We have for a dipole field r=Lsin? 0
line:

Taking the derivative with respect to & we obtain:

d)=Lsin* 6 [4Lsin2 6 cos @ — 4r, cos O cos(@ — 6, )— 2r, sin O sin (6 — 6, )] )

d'9= 0 will correspond to d minimum. Equation (9) can be solved numerically. The
calculation is performed in routine dchapp (CLUSTER).
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3.6 DISTANCES, A GENERAL ALGORITHM

For the WHISPER experiment onboard CLUSTER we have to calculate the distances to the
different boundaries, Magnetopause, Bow-Shock, Plasmasphere, Neutral Sheet, northern and
southern Plasma Sheet boundaries. The calculation to this complete set of boundaries is
performed in routine clusdis which assembles the different routines developed for CLUSTER
and described above.
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4. INTERNAL MAGNETIC FIELD MODELS

4.1 INTRODUCTION

Internal magnetic field models are derived from measurements performed in ground stations,
ships and aboard low-Earth orbit spacecraft. Ground measurements have two advantages:

- They are and have been made during a long period.
- They are performed in good conditions (magnetic observatories).

Their major disadvantage is the presence of magnetic perturbations generated by localized
crust anomalies which can lead to errors as high as 100 to 400 nanoteslas (nT). Magnetic
observatories are not available on oceans and seas and the magnetic measurements are
performed by ships.

Spacecraft measurements offer a good coverage of the whole Earth in a rather short time. The
on-board magnetometers have presently a high sensitivity (better than 0.1 nT). The final
precision depends mainly on the local perturbations due to the spacecraft itself or the
uncertainty in the attitude determination.

Present magnetic field models achieve a precision of 20 nT.

4.2 THE SPHERICAL HARMONICS EXPANSION

Present models of the internal magnetic field usually neglect the contributions (magnetic field
effects) of the ionospheric currents and of the ring current. The magnetic field is therefore
derived from a scalar potential and is also divergence free:

B=-VV and V-B=0 (1)
which leads to V2 V=0

In spherical coordinates the Laplace equation can be written:

1| o,V 1 (. 1 o
—|=| = |[+——|sin0— [+ ———5|=0 )
ro| or or sin 6 00 09 ) sin” 6 op

We separate the variables:

V=/0)Y(0.0) 3)

We obtain two different equations:

The Euler equation:

(£ (r)-27()=0 @)
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2
and the spherical harmonics equation: - K sin Hg + — 12 5_12/ +AY =0
sin @ 00 c0) sin” 6 oy
The solution of the Euler equation for the internal magnetic field can be written:
B
Fr)=— (6)
The spherical harmonics equation can be split further:
Y(6,0)=g(u) h(p) (7)
where = cosé
We get:
Of? 2 i 1 "
h(qo)% [0 ) ()] + 2 gluh"(p)+ala +1)g(u)hp)=0 )
We consider harmonic functions with period 2. In this case % =—n” (modulo some

constant). The solution % (¢) has the following form:
h(g0)=Mcosmgo + Nsinme

Function g(u) satisfies the following differential equation:

2
(l_luz)g”_zglu’+|:a(a+l)+lliluj|g2=0 )

In this particular case when n = 0, « is an integer, g(u) satisfies the equation:

(l—yz)g”—2g,u’+a(a+l)g=0 (10)
The solution of this equation is the Legendre polynomial P.(z). Thus for n = 0 the solution has
the form:
B
Ve =—57 B (cos0) (1)

33

)



when the longitude ¢ is absent the potential } can be expanded in zonal harmonics. The
Legendre functions can be expressed as:

P =1, P =cosf, P, 2%(30052 6’+1), P, :é(500539+30050),... (12)

In a more general way:

P(0)= 135....{2n 1) {2 cosnd + 21.—n cos(n—2)0+2. 13.n(n —1) )cos(n - 4)¢9+...}

2.4.6....(2n) 1.2n-1) 1.2.2n-1)2n -3
We have:
» Oifnzm
IP(u) B, ()du=3 2 0 (13)
- 2n+1

P, (1) are normalized.

n

2n+1}%

Functions {

. B . . . .
Any sum of functions —*- B, (cos @) is also a solution of equation V2/ = 0 when 7 is zero.
r

The most general solution in the axisymmetric case is thus:

o0

V=52 p (coso) (14)

or

when 7 1s different from zero the equation (9) is an associated Legendre equation. The
solution of this equation is an associated Legendre function P,,(x) defined as:

(2 d”
P ()= ) o P,(u) (15)

The general solution of V2V = 0 has the following form:

n+l
V=3 (1] 3 (Mcosmg + Nsin mo) P, (cos@) (17)
0 m=0

r

The associated Legendre functions can be written as:

m

WPH(COSH) (18)

P, (cos@)=sin" @
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We get:
) 3. . 2
Puzsmé?,Pz’l:EstQ,Pz:.%sm o (19)

more generally:

})n ” (9): % Sinm 0 COSn_m 0 — (n — m)(n —m- 1) cosn_m_2 0 BRI (20)
’ 2"n(n —m) 2(2n -1)

The P,,...0) can be normalized.

" 0 forn#n
IPrt,m(/“l)Prt,n1(/’l): 2 (n+m) forn=n (21)

- 2n+1(n—m)

A truly normalized associated function should have the normalizing factor:

_ |
2n+1 (n—m) for m =0 22)
2 (n+ m)!
and
2”2” for m=0 23)

In fact Schmidt defined new normalizing constants. The associated Legendre functions P,,
(cos 6) cos mep and P,, (cos 6) sin mg are orthogonal on a sphere. Surface integration on a
sphere of radius a gives:

L P00 {C.OS} mok,,,(0) {C."S} ' psin0d0dp=0  (24)
Sin

4 = »=0 S

Whenn=n"and m =m'= 0 we get (13).
Whenn=n"and m =m'# 0 we get:

2
Ler 2Jgr [le (0) {C.Os}m(p} Sin 0d0dp = 1 (n + m)!

4 o=0 0 sin 22n+1) (n—m)

Schmidt used this fact to define the following constants:

P ()

P, (0) when m =0 (25)

n,m

pln=m) P, (6) when m #0 (26)

a (9) n+m)



In this case:

r j {R{"(G){C?s}m(p} sin 0dOdp = — (27)

1 4
ar om0 sin (2n+1)

These functions are not really normalized. Their main advantage lies in the fact that the
constants 4,”, B, give roughly the size of the different harmonics.

The associated Legendre polynomials have the following properties:

- P,» (6) has (n - m) real roots between #=0 and = 7
- if (n - m) is even or odd P,” (6) is symmetric or antisymmetric with respect to the equator.
- the P,» (6) can be written:

n

P"(8)=p" sin” O(cos @ —cos b, )(cos @ —cos B, )------ (cos@—cosé, ) (28)

. cosme
where 6, 6, ....... , 8., are the (n - m) roots. The harmonics P”" (9) ] are zero along
sin me

the (n - m) small latitude circles and along the (2m) meridians.
For n = 0 we have zonal harmonics.

For m = n we have sectoial harmonics.

For n > m > 0 we have tesseral harmonics.

The relationship between the Schmidt functions P,, (6) and the Laplace-Gauss functions
P""(0) is:

P, (6’)=% P""(0) (29)

where 2n- )11 =13.5....... Q2n-1)

4.3 GENERAL EXPRESSION OF THE MAGNETIC FIELD IN
SPHERICAL HARMONICS

The potential of the magnetic field can be written as:

n+l
V= angjm (gj fj (g,':“ cosm@ +h" sin m(p)Pn’” @ (30)
1 0

r
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where 7, 6, ¢ are the geocentric coordinates. 7 is counted in kilometers, a is the geomagnetic
earth radius (6371.2 km), @is the colatitude and ¢ is the longitude. The components of the
geomagnetic field are:

n+2
B, =‘%:nfx (gj (n+1)X (g7 cosmp+h'sinmep) P (0) Gla)
T\
n+2 m
B, :_%%:_ngx (%) %: (g;”cosmgo+h,’,”sinm(o)ép”0,,—6§9) (31b)
1 O"7V 1 nmax (g n+2
B —_ v _ a m_: —h" P"(O 31c
rsin@ 50 sin@ [7’) zm(gn Sinme ncosm(o) ' (0) (310

The g,” and A, are the Schmidt normalized coefficients of the Earth's magnetic field. The P,
are the associated Legendre functions. EOS as well as Scientific Journals publish each five
years the Gauss coefficients for the IGRF and DGRF.

The IGRF (Interim Geomagnetic Reference Field) is predictive while the DGRF (Definitive

Geomagnetic Reference Field) corresponds to stable coefficients. For example IAGA 2020
defined the IGRF 20 and the DGRF 15.

4.4 THE LAPLACE GAUSS RECURRENT FORMULAE

The Laplace Gauss formulae are used in the software for the calculations of the internal
magnetic field. To derive them we use the equation (51aa, Ref. 1, p.623):

(27’1 + I)COS 0Pn,m = (n —m+ 1)P11+l,m + (l’l + m)Rz—l,m (32)
which can be written:

(n —m+ 1)Pn+l,m = (2]’1 + I)COS HPn,m - (n + m)R7—1,m (33)
Ifwesetn — n-1we get:

(1= m)P,, = @n-1)cosOP, , ~(n+m-1)P,, G4
Thus:

f)n,m = (2n — 1) COos HPn—l,m - L’n_l Pn—2,m (35)

n—m n—m

We introduce the relation between P,,, and P

n,m = (Zn — 1)! " ’ Pﬂ*] m = (2n — 3)! Pn_lqm > 1)71*2 m
’ (n—m)! ’ (n—m—l)! ’ (n—m—Z)!

(2n-5)

— Pn—Z,m (3 6)

37



Introducing (36) into (35) we obtain:

(2n-3)(2n —1)n—m) 2n—5N(n+m—1)n—m)

Pn,m — HP”fl’m — Pn—Z,m (37)
(n—m—-1)2n-1)(n—m) cos (n —m—-2) (n - m)(2n ~1)
But we can write 2n-1)=2n-3)(2n-1)=(2n-5)(2n-3)(2n-1) (38)
and (n—m)=(m—m—-1(n—m)=(n-—m—2)(n—m—1)(n—m) (39)
Introducing (37) and (38) into equation (37) gives:
Pn,m =Cos gpnfl,m _Kn,m Pn72,m (40)
2 2
where K" = (n — 1) — (41)
(2n-1)2n-3)
This formula is valid for n > m. For n = m we start with the general formula (42):
P, (0)= _ @y sin” @{cos" ™ O — (1=m)n—m~1) COS" PG e (42)
’ 2" n!(n —m) 2(2n-1)
For n = m we get:
2n! .,
P, (0)= S sin” 0 (43)
2n-2) .
For nn - 1 we obtain from (43): B, (9): % sin""' @ (44)

Comparing (43) and (44) we derive the following relationship (argument 1is omitted for the

Legendre polynomials):
P, =(@2n-1)sinép,,,, 45)
To obtain the Laplace-Gauss relationship we take into account the formula:
P, =Q2n-1)pP"" (46)
Applying (46) to both members of equation (45) gives:

P"" =sin@ P (47)
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Taking into account the general formula (43) and calculating the derivatives of equations (40)

and (47) we have the complete set of equations:

Pojo :1 Of;PO,O
=0 48
0 (48a)
n,n n—-1,n—1
P"" =sin@ P""", =sin 6 +cos@ P! (48b)
prm =cosf Pn—l,m — gmm Pn—2,m (480)
n,m n—1,n-1 n-2,m
28 =cos¥ il —sin@ P — K" 2 (48d)
o0
é 2

with g = 1) (480)

(2n-1)2n-3)

The Schmidt normalizing functions must be converted in the gaussian system. To obtain the

recurrence formulae one notices that:

(2n—1)!

(n—m)

and from equation (26): —m)
P = 2ln—m) P
(n + m)! |

We have: _ -
ve pr [2n=m) Qn =1 o o o
(n+m) (n—m)

and: poi_ [2ln—m+1) (2n—1)! pron-t _ gunl pnac
! (n+m—1) (n—m+1)

The coefficient S"» of equation (51) can be rewritten as:

from equation (29) : p _pw

nm _ 2(n—m+1)! (2n—1)!!(n—m+1)
S _\/(n+m—1)!(n+m)(n—m+1) (1-m+1) (53)

We can replace part of the above expansion by coefficient S""/ and obtain finally:

Sn,m — Sn,m—l n—m+ 1 (54)
n+m

(49)

(50)

(51

(52)
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for m # 1. When m = 0 we have from equation (49):

2n —1)!

P,y =P"" ( =St (55a)
For m = 1 we have pi- 2(n—-1) P - 2(n+1) 2n—1) pri (55)
(n+1) " (m+1) (n—1)
which can also be rewritten as:
P = 2n-1} n @n—-1)p1prt ="t pr (55¢)
(n+1) n!

We can find a recurrence relationship between S* and S* using equations (55a) and (55c¢):

L 2(n—1) wo [ 20 o 6
S _\/(n—l)!n(n+l)nS - n+1S (56)

If we consider the more general formula for m > 1 we would have:

form =1 g—gro [Azmtl o, (57)
n+m

In order to bobtain a unique formula we write:

g — g /J(n -m +1) (58)
n+m

where J=2 form=1 and J=1 for m > 1. For m = 0 we can deduce a relationship from
equation (56):

; o 2n—1
Sn,a :Sn 1,0 % (59)
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4.5 THE RECURRENT FORMULAE IN THE SOFTWARE

The calculation of these formulae with the computer imply the use of arrays without null
indexes. To avoid this problem it is necessary to make changes in the superscript: k =n + 1

and 1 = m + 1. We obtain a new set of formulae which appear in the code if we replace n,m in
formulae (58) and (59):

ght = grn [E=Lr1) (60a)
k+1-2
§E0 = gL {—2: __ﬂ (60b)
For the Legendre polynomials we have the following expressions:
Pl,l — 1 , Pk,k — Sin 0 Pk—l,k—l (613)
1,1 Kok k—1,k—1
% =0, Oﬁgg =sin g i +cos@ P (61b)
k.l k-1, k=2,1 2 é
P coso0 " _singpr g X where  K*' = (k=2) —(1-1) (61c)
0 6 2 (2k —3)2k - 5)

The coefficients in the harmonic expansion have non zero superscripts, i.e., g1° is labeled as
g(2,1) in the software. In the american software memory was saved and coefficients g,” and A,
were packed in a square matrix as follows:

g(1.1)
g(2.1)g(2.2)h(3,

(3
g(3.1)g(3.2)g(3,

=

(2,2)1(3,2) h(n,2)
) h(n,3)
) h(n4)

3
3

(62)

g(n,l)g(n,Z)g(n,3) g(n,n)

These coefficients are stored in the common LG, column by column. The coefficient g(1,1)
contains a numerical factor 10 or 100 which normalizes the coefficients and these coefficients
as stored as integers. The only problem with this way of arranging the (14,14) matrix is that it
is a rather cumbersome exercise when one remembers that the coefficients given in the
literature have different indices: For IGRF 2020 we have in IAGA the following table I:
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TABLE I

IGRF 2020 secular variation
g/h n m coefficients in | in nanoteslas/yr
nanoteslas
g 1 0 -29404,8 5,7
g 1 1 -1450,9 7,4
h 1 1 4652,5 -25,9
g 2 0 -2499,6 -11
g 2 1 2982,0 -7
h 2 1 -2991,6 -30,2
g 2 2 1677,0 -2,1
h 2 2 -734,6 -22.4
In the code we have the following table II or matrix 1g:
TABLE II
1=1 1=2 1=3 1=4
= 1g(1,1)=10 1g(1,2) =46525 | 1g(1,3)=-29916 | lg(1,4)=-821

1g(2,1) = -294048

1g(2,2) = -14509

1g(2,3) = -7346

1g(2,4) = 2419

k
k
k

Il
W | —

le(3,1) = -24996

1g(3,2) = 29820

1g(3,3) = 16770

lg(3,4) = -5434

On the lower left of the last table one recognizes the g(k,/) coefficients and on the upper right
one recognizes the A(k,[). These coefficients are read as integers in the matrix 1g(k,/) and the
transformation factor from integers to real is contained in the coefficient Ig(1,1).

A similar matrix must be constructed for the secular variation of the g(k,/) and A(k,/) i.e., the

g(k,7) and h(k,7). The magnetic field is calculated with this algorithm by the routines
dgrfd5_70 for epochs between 1945-1970, dgrf70_95 for epochs between 1970-1995,
dgrf95 20 for epochs between 1995-2020, igrf20 for epochs greater than 2020, dgrf15 for
epochs greater than 2015, dgrf10 for epochs greater than 2010, dgrf05 for epochs greater
than 2005, dgrf00 for epochs greater than 2000, dgrf95 for epochs greater than 1995, and

gsfc65 for epochs around 1965 (Mc Ilwain L calculation).

4.6 A NEW COMPUTER CODE FOR THE CALCULATION OF THE
GEOMAGNETIC FIELD

In the previous paragraph we have mentioned that the creation of the LG matrix was a
difficult task and a source of errors because of the difference in the ordering of the
coefficients. We have modified the computer code in order to keep the natural ordering of the
coefficients published each five years by the IAGA and we have two commons, one LG for

the coefficients in their natural order:

LG/ g(1,0), g(1,1),A(1,1), 2(2,0), g(2,1), A(2,1),....
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and the common LGT which contains the secular derivatives. The coefficients in LG and in
LGT are transformed in coefficients gg, ggt and hh, hht in the following double loop:

ntot=0

do 30 k =2,k max

gg(k,1)= dble(lg(ntot +1))

ggt(k,1)=dble(lg t(ntot +1))

nm =2 *k-1

do201=2,k

inc=2%[-2

gg(k,1)= dble(lg(ntot + inc))

ggt(k,1)= dble(lg t(ntot + inc))

hh(k,1)= dble(lg(ntot + inc +1))

hht(k,1)= dble(lg t(ntot + inc + 1))
20 continue

ntot=ntot+nm

30 continue

with this new software the DGRF9S5 coefficients are stored in arrays LG and LGT in the
following way:

LG /-295568,-16718,50800,-23405,30470,-25949,16569,......
LGT/ 88,108,-213,-150,-69,-233,-10,-140..........

In LGT the coefficients have been multiplied by a factor 10 and are later divided by the same
factor. One can compare the above series and table II.

Another advantage of this new code is the possibility of cross-checking the coefficients as the
arrangements of these same coefficients are completely different.

The magnetic field is calculated with this algorithm by the routines chp4S_70 for epochs
between 1945-1970, chp70_95 for epochs between 1970-1995, chp95 20 for epochs between
1995-2020, chp95 for epochs greater than 1995, chp00 for epochs greater than 2000, chp05
for epochs greater than 2005, chp10 for epochs greater than 2010, chp15 for epochs greater
than 2015 and chp20 for epochs greater than 2020.
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4.7 THE THREE COMPONENTS OF THE GEOMAGNETIC FIELD

The components of the geomagnetic field are given in the 7, 0, ¢ frame of reference:

N
A

-

Figure 1

The three components of the geomagnetic field are:

I
M=

B =-

r

44
or

n=1 m=0

1oV x(a\" o . P (0)
B, :—;%:—El (—J mgo(gn cosmep+h smm(p) Py (63)

n+2
(E) (n + 1) i (g,’,” cosm@ + h" sin m(p)Pn’” (6’)
r

~N

B =- L & _1 %[gjmim(’"sinm —h" cosm )P’"(@)
© T rsin0 dp sn0a\r) o e SHMeTR COSMPIL,

In these formulae B, is counted positive outwards (in the direction of 7), Bsis counted
positive southwards (in the direction of 8 ), By is counted positive eastwards (in the direction

of ).
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4.8 THE TILTED DIPOLE

The first three harmonics of the magnetic field potential can be replaced by a tilted dipole.
From (30) we have:

=a(2] ! B0+ el coso i sing) 0] 64

where P1° (6) = cos fand P! (6) = sin 6.
We can calculate the magnetic field or the potential produced by a tilted dipole. In the tilted
frame of reference we have:

r

2
V=a (gj 8] cos®” (65)
where g, is the magnitude of the tilted dipole and & is the colatitude in the tilted frame of
reference. From spherical triangle NPD we obtain readily:
cos @ =cos @, cos O +sin 6, sin & cos(p — ¢, ) (66)

where ¢, is the longitude of the meridian which contains the tilted dipole and 6, is the tilt.

Introducing (66) into (65) we get:

2
V=a (gj [g‘f cosf, cosf+ g/ (sin 0, cose, cose +sin b, sin @, sin go)sin (9] (67)
r

Identity implies the following relationships:

g/ cosd, =g
g/ sinf, cosp, =g| (68)

g'sin@, sinp, =h
From (68) we obtain:
—0 0 )2 1V 1
8 :\/(g1 ) +(g1) +(h1)2
tang, =h/ /g (69)

cosd, =g10/\/(810)2 +(g11)2 +(h11)2

g/ defines the "strength" of the tilted dipole, €, and ¢, define the orientation.
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Figure 2

In the software developed for INTERBALL and CLUSTER, the dipole routine contains the

first three harmonics and their secular changes. The three magnetic field components of the
tilted dipole are:

3
B,=-2 (gj [glo cosf+ (gll cos¢ + h, sin (p)sin 9]
r

3
B, = (ﬂj [_ gl sin 0+ (gll cosg + h, sin (o)cos 6?] (70)
r

3
a .
B, (7j [— g, sing + h/ cos (p]

The magnetic field of the tilted dipole is performed in the routine dipol for epochs greater
than 1995 with the coefficients of DGRF95. The value of the tilted dipole g, and its
orientation is calculated in the routine incline.
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4.9 THE ECCENTRIC DIPOLE

In the previous paragraph we have shown that the first three harmonics of the geomagnetic
field could be replaced by a tilted dipole. It is possible to show (Schmidt, Ref. 2) that three
additional coefficients (g2°, 2!, g2') of the geomagnetic potential can vanish through a
translation of the tilted dipole. A nice solution was obtained (Bernard et al. Ref. 3) using the
tools of Quantum Mechanics, namely the Wigner formulae for the rotation of spherical
harmonics. Spherical harmonics in Quantum Mechanics can be expressed in the form:

_ | .
@)= [P B st 1)

where (-1)" is a phase factor. Thus

with L
2n+1
a’' =1 itm=0
a'=0 ifm#0

Taking into account (30) and (71) we get:

=33 H S gy —iny)e + (g +in?)e e B (0) - (73)

r m=0

This formula can be compacted by summing between - n and + n. We obtain:

s =+n "
=fiH S B g i || ] v (6.0) (74)
21 m=—n |m| |m|

Trough two rotations, the spherical harmonics will be functions of angles ®, @ different from
angles 6, ¢. To get the same potential we still have the following equation must be satisfied:

55 B;'[ ”—l—h’”}[ﬂ} Y"(6,p) = Z Bm{G’”—i—H’”Mm} v (@.@) (75

| ] " J Ll

where the G,» and H," are the coefficients in the tilted reference system and the Y,” (®, @) are
the related spherical harmonics. The relation between the spherical harmonics is obtained with
the Wigner formula (Messiah, Ref. 4):

Y (0.0)="% R. (@B.7)Y(©.0) (76)

m=—n
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where R" (a ﬂ ): —ima " e—imyy

m.,m

i n — ! [(n + ml ) (n — m' ) (l’l + m)' (’/Z B m)‘]% 2n+m‘fm72t 2t7m'+m
i e =2 () (n+m' —t)(n—m—t)!t!(t—m' +m) d 7 .

where summation is over 1 + 7terms, where 7is the smallest number betweenn+m, n *m .

&and 7 are defined as 7= s1n£ &= cosﬁ (figure 3).

Figure 3

Inserting (76) into (75) and multiplying by the conjugate spherical harmonic function Y* (®,

@) we obtain:
"l 2 R (78)
ml

I—
m

Taking the conjugate of (78) and performing the addition, we get:

BrlGr - ]="Y" By {g: -

28 Gi="3 B'"L J ler (Ry, + R )+inr (R, -RE) (79)

where Ry, = (=1) R, _,

r—k,—m = (_l)k_m rk,m
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Taking into account the symmetry properties we get:

G = 5 Ar 1! cos(ka +my)+(=1)" r'_ coslka—my
F il ) s solka=m)]

w i [t sin(ka + my)—(=1)" 7, sin(ke — my )|}

In order to obtain the A we use equation (77) again. Subtracting the complex conjugate to
(77) one obtains:

H = kZA’”  sin(ka + )" ', sinlka —
G Al m)+ I sk

+h" [— . sin(ka + m}/)— (— 1)’" - sin(ka - m]/)]}

These general relationships, can be applied to the first three harmonics of the geomagnetic
potential. If we set o = 0, we get:

G, =g/ sin B+ g| cos fcosy —h/ cos Bsiny
Lo . (82)
H =g siny +h, cosy

Angles yand fcan be chosen for avanishing of the coefficients G1' and H,'. We obtain:

1

tany = ——-

&

tan = gicos B—h| siny
gl

(83)

If we compare (69) and (83) we deduce that ¢, =- yand 6, = - S. For the three other
harmonics, G2°, G>!, H>!' we get:

G, =g, (cos p— sm ,6’) \/7(gzcosy—h sm;/)stﬂJr\/g(gzzcos2;/—h22ssin2j/)sin2 p
1 3 5. 1 1. l . 2 2 .
G, = Zgz sin2f +cos2f\g,cosy —h,siny —Esm2,8 g,c082y —hysin2y)  (84)

H, = (cos4 S —sin? ﬂ)(g;sin v+ hzlcos;/)— sin B (gzzsin 2y + hfcosZ;f)

It is possible to calculate the translation of the tilted dipole which will cancel G2°, G»!, H>'.
The new dipole remains parallel to the old dipole in this translation (fig. 4).
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In the old frame of reference a point P is defined by its coordinates (r, €, ¢). In the new frame
of reference the point P is defined by the coordinates (R, ®, ®@). The translation is defined by
the vector 7 in the direction (6., ¢,). If the translation cancels the three higher harmonics we

have:

0
0

3
a
2

4
G’ P°(6)+ 3—3 [Gg P(0)+ (G; cose + H) sin (p)]’21 (49)] (85)

r

In this formula G,” is the coefficient in the eccentric frame of reference. It is possible to
calculate R as a function of » and r,. We get:

) 2
R™=r"+71y —2rr, cosy

Where y is the diedral angle between vectors 7, and 7 . From spherical trigonometry it is
easy to calculate cos -

cosy =cos 6, cosf +sin @ sin 6, cos(¢p—p,, )
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Introducing these two equations in the left member of equation (85) and linearizing we get:

Lo

p— —0 3 T _ : :
G’ = cos0+3G) a’ 4 cos’ O cosf, +3G a’ % cosOsin O cosg cosg, sin @,
r r

r
—o0 Ty . . . . —0 3 1
+3G, a —cos@sinfsingsinb;sing, — G, a” — cosl, (86)
r r
3 4

=2 G cosf+L [% (3 cos’ H—I)Gg ++/3sin @ cos @ (Gécos p+H)sin (p)}

r r 3
Identifying members with same trigonometric lines we get:

G’ =G}

a6 en ey
’ 12G”

1G) 1
0
26 |alG?+m!’ 36 87)
12GY

cosf, =

cosQ, = 1 Géﬁ !
Po V3G 1, sin6,

: 1 Hya 1
Sn@Q, =——=——

J3 G 1, sin6,

which completely define the translation in the tilted reference frame. The orientation and the
displacement of the eccentered dipole are calculated in routine testdipex2. This routine uses
incline for the calculation of the tilted dipole plus two other routines not described in the
MAGLIB reference manual (for specialists only).
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4.10 CALCULATION OF THE MAGNETIC FIELD COMPONENTS
NEAR THE SURFACE OF THE EARTH

If a point P is near the surface of the Earth, it is sometimes interesting to calculate the
components of the Earth's magnetic field near the Earth's surface. We calculate the
relationship between the geodetic latitude and the geocentric latitude. If a and b are the
semi-major axis and the semi-minor axis of the Earth's ellipsoid at the Earth's surface we
have:

Z (88)

We can derive the components of the normal to the ellipsoid surface using the gradient
formula:

V="2i+ 2k (89)

The normal is defined as N= 6/ H%H

2
From the following figure we have: tan A = v, = EZ—Z (90)
LoX
. az
We also have: z=psinfx=pcosf  thus tan A = yEl tan 91)
P 1
From usual trigonometric formulae: sin” f§ = { 1 (92)
+
tan® S

_ sin 3 = sint

Using (91) we get: a h (93)
sin® A+—cos® 4
b
We also have x = a cosf, z = b sinf
we get easily: o> = a® cos’+ b’ sin’f3
with: e’ =1 b we obtain p’=a’cos’ f+a’ (l—ez)sin2 B
: 7

thus: p=a+l-¢’sin’f
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The coordinates of point P are:

x=pcosf+hcosd

4
z=psinf +hsin A ©4)
p
A
r
o
h
p
0
A
Figure 5
The geocentric distance  and the colatitude 6 of point P are:
1
r= (x2 +z° )/2
i (95)
0 =acos| —
r
The angle o between the local vertical and the geocentric direction is:
a=0+1-90° (96)

a is positive for A positive and « 1s negative for A negative. It is possible to calculate the
vertical and the horizontal components of the Earth magnetic field. If X is the component
toward the north, Y the component toward the east and Z the vertical component, we have:

X=-B, sina—B,cosa
Z=-B, cosa+B,sina 97)
Z=B8B,



Nadir

Br

W =<

Figure 6

The horizontal component H is defined as:

H=\JX*+Y? (98)

The declination D is defined by:
sin D = z, cosD = X (99)
H H
The inclination / is defined as:

tanf = Z- (100)
H

4.11 DIPOLE MAGNETIC FIELD IN CARTESIAN COORDINATES

For some applications it is useful to calculate the three components of the magnetic field in a
cartesian coordinate system. The general expression of the dipole potential is:

o
=gt 2 (101)

2
r

where @ 1s the colatitude and r is the radial distance. In a cartesian coordinate system with axis
z along the dipole axis, the colatitude @ can be expressed as €= a cos(z/r)

V can be rewritten as:

V = g10 ZI”73 (102)
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Taking the partial derivatives:

We obtain the three components of the magnetic field in a cartesian coordinate system :

B =-3g xr’
B,=-3 gl yr” (103)
B.=glr” (322 P —1)

The dipole magnetic field is calculated in a rectangular coordinate system in the routine
dipols.

TABLES OF INTERNAL MAGNETIC FIELD COEFFICIENTS

The following tables give the coefficients for the internal magnetic field since epoch 1945 in
two forms, the original way compacting the g and the h in one matrix in the software, and our
new approach which involves two matrices in the software for the g and the h. The more up-
to-date coefficients are provisory and are provided with their secular variations.

For sake of simplicity we have provided not up-to-date modules with their secular variations.
For example if a new set of coefficients is given for the year N, the software for the module
which corresponds to year N-5 will receive definitive coefficients, but no secular variations.
In this case these secular variations are calculated, using interpolation between the set for year
N and the set for year N-5. These secular variations are provisory. At year N+5, these secular
variations will be definitive as the set of Schmidt coefficients for year N will be definitive.
For example in 2010, Schmidt coefficients for the interim geomagnetic field will be given as
well as the secular variations. Schmidt coefficients for 2005 Epoch will be definitive. The
secular variations are not given but can be calculated using the sets of 2010 and 2005. In 2015
the coefficients of 2010 will be definitive, thus the calculation of the secular variations for
2005 will give definitive secular variations.

For sake of simplicity the routine which involve a multiple set of coefficients will be updated
when a new set of definitive coefficients will be available. For example modules igrf95-05
will be transformed in dgrf95-05 in 2010 as the coefficients for epoch 2005 will be definitive.
We suggest to update this routine again in 2015 adding the set of definitive coefficients
corresponding to epoch 2010. To dgrf95-05 will correspond chp95-05 in 2010.
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CHP20 (Interim coefficients)

data lg/
-294048,-14509,46525,-24996,29820,-29916,16770,-7346,13632,-23812,-821,12362,2419,
5257,-5434,9030,8095,2819,863,-1584,-3094,1997,480,-3497,-2343,3632,477,
1878,2083,-1407,-1212,-1512,323,135,989,660,655,-191,729,251,-1215,
528,-362,-645,135,89,-647,681,806,-767,-515,-82,-169,565,22,
158,235,64,-22,-72,-272,98,-18,237,97,84,-176,-153,-5,
128,-211,-117,153,149,137,36,-165,-69,-3,28,50,84,-234,
29,110,-15,98,-11,-51,-132,-63,11,78,88,4,-93,-14,
-119,96,-19,-62,34,-1,-2,17,36,-9,48,7,-86,-9,
-1,19,-43,14,-34,-24,-1,-38,-88,30,-14,0,-25,25,
23,-6,-9,-4,3,6,-7,-2,-1,-17,14,-16,-6,-30,
2,-20,31,-26,-20,-1,-12,5,5,13,14,-12,-18,7,

1,3,8,5,-2,-3,6,-5,2,1,-9,-11,0,-3,

5,1,-9,-9,5,6,7,14,-3,-4,8,-13,0,-1,

8,3,0,-1,4,5,1,5,5,-4,-5,-4,-4,-6 /

CHP20 - SECULAR VARIATION (Interim coefficients)

data lgt/
57,74,-259,-110,-70,-302,-21,-224,22,-59,60,31,-11,
-120,5,-12,-16,-1,-59,65,52,36,-51,-50,-3,5,0,
-6,25,2,-6,13,30,9,3,-5,-3,0,4,-16,13,
-13,-14,8,0,0,9,10,-1,-2,6,0,6,7,-8,
1,-2,-5,-11,-8,1,8,3,0,1,-2,-1,6,4,
-2,-1,5,4,-3,3,-4,-1,5,4,0,0,0,0,

112*0/
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CHP1S5 (Definitive coefficients)

data 1g/

-2944146,-150177,479599,-244588,301220,-284541,167635,-64217, 135033,-235226,
-11529,122585,24504,
58169,-53870,90742,81368,28354,12049,-18843,-33485,18095,7038,-32923,
-23291,36014,4698,
19235,19698,-14094,-11914,-15740,1598,430,10012,6955,6757,-2061,7279,3330,-12985,
5874,-2893,-6664,1314,735,-7085,6241,8129,-7599,-5427,-679,-1953,5182,559,
1507,2445,932,327,-288,-2750,661,-232,2398,889,1004,-1678,-1826,-316,
1318,-2056,-1460,1333,1616,1176,569,-1598,-910,-202,226,533,883,-2177,
302,1076,-322,1174,67,-674,-1320,-688,-10,779,868,104,-906,-389,
-1054,844,-201,-626,328,17,-40,55,455,-55,440,170,-792,-67,
-61,213,-416,233,-285,-180,-112,-359,-872,300,-140,0,-230,211,
208,-60,-79,-105,58,76,-70,-20,14,-212,170,-144,-22,-257,
44,-201,349,-234,-209,-16,-108,46,37,123,175,-89,-219,85,
27,10,72,54,-9,-37,29,-43,23,22,-89,-94,-16,-3,
72,-2,-92,-88,42,49,63,156,-42,-50,96,-124,-19,-10,
81,42,-13,-4,38,48,8,48,46,-30,-35,-43,-36,-71 /

CHP15 - SECULAR VARIATION (Interim calculated secular variations)

data lgt/
7332,10174,-28698,-10744,-6040,-29238,130,-18486,2574,-5788,6638,2070,-628,
-11198,-940,-884,-836,-328,-6838,6006,5090,3750,-4476,-4094,-278,612,144,
-910,2264,48,-412,1240,3264,1840,-244,-710,-414,302,22,-1640,1670,
-1188,-1454,428,72,310,1230,1138,-138,-142,554,-282,526,936,-678,
146,-190,-584,-1094,-864,60,638,104,-56,162,-328,-164,592,532,
-76,-108,580,394,-252,388,-418,-104,440,344,108,-66,-86,-326,
-24,48,344,-388,-354,328,0,116,240,2,24,-128,-48,498,
-272,232,22,12,24,-54,40,230,-190,-70,80,-200,-136,-46,
102,-46,-28,-186,-110,-120,204,-42,-16,0,0,0,-40,78,
44,0,-22,130,-56,-32,0,0,-48,84,-60,-32,-76,-86,
-48,2,-78,-52,18,12,-24,8,26,14,-70,-62,78,-30,
-34,40,16,-8,-22,14,62,-14,-6,-24,-2,-32,32,-54,
-44,24.4.-4,16,22,14,-32,24,20,-32,-12,38,0,
-2,-24,26,-12,4,4,4,4,8,-20,-30,6,-8,22 /
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CHP10 (Definitive coefficients)

data 1g/
-2949657,-158642,494426,-239606,302634,-270854,166817,-57573,133985,-232654,-16040,
123210,25175,
63373,-53703,91266,80897,28648,16658,-21103,-35683,16446,8940,-30972,-23087,35729,
4458,
20026,18901,-14105,-11806,-16317,-1,-803,10104,7278,6869,-2090,7592,4418,-14140,
6154,-2283,-6626,1310,302,-7809,5540,8044,-7500,-5780,-455,-2120,4524,654,
1400,2496,1046,703,164,-2761,492,-328,2441,821,1084,-1450,-2003,-559,
1183,-1934,-1741,1161,1671,1085,696,-1405,-1074,-354,164,550,945,-2054,
345,1151,-527,1275,313,-714,-1238,-742,-76,797,843,214,-842,-608,
-1008,701,-194,-624,273,89,-10,-107,471,-16,444,245,-722,-33,
-96,213,-395,309,-199,-103,-197,-280,-831,305,-148,13,-203,167,
165,-66,-51,-176,54,85,-79,-39,37,-251,179,-127,12,-211,
75,-194,375,-186,-212,-21,-87,30,27,104,213,-63,-249,95,
49,-11,59,52,0,-39,13,-37,27,21,-86,-77,-23,4,
87,-9,-89,-87,31,30,42,166,-45,-59,108,-114,-31,-7,
78,54,-18,10,38,49,2,44,42,-25,-26,-53,-26,-79 /

CHP10 - SECULAR VARIATION (Definitive calculated secular variations)

data lgt/
11022,16930,-29654,-9964,-2828,-27374,1636,-13288,2096,-5144,9022,-1250,-1342,
-10408,-334,-1048,942,-588,-9218,4520,4396,3298,-3804,-3902,-408,570,480,
-1582,1594,22,-216,1154,3198,2466,-184,-646,-224,58,-626,-2176,2310,
-560,-1220,-76,8,866,1448,1402,170,-198,706,-448,334,1316,-190,
214,-102,-228,-752,-904,22,338,192,-86,136,-160,-456,354,486,
270,-244,562,344,-110,182,-254,-386,328,304,124,-34,-124,-246,
-86,-150,410,-202,-492,80,-164,108,132,-36,50,-220,-128,438,
-92,286,-14,-4,110,-144,-60,324,-32,-78,-8,-150,-140,-68,
70,0,-42,-152,-172,-154,170,-158,-82,-10,16,-26,-54,88,
86,12,-56,142,8,-18,18,38,-46,78,-18,-34,-68,-92,
-62,-14,-52,-96,6,10,-42,32,20,38,-76,-52,60,-20,
-44,42,26,4,-18,4,32,-12,-8,2,-6,-34,14,-14,
-30,14,-6,-2,22,38,42,-20,6,18,-24,-20,24,-6,
6,-24,10,-28,0,-2,12,8,8,-10,-18,20,-20,16 /
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CHPOS (Definitive coefficients)

data 1g/

-2955463, -166905, 507799, -233724, 304769, -25945, 165776, -51543, 13363, -230583,
19886, 124639, 26972, 67251, -52472, 92055, 79796, 28207, 21065, -22523, -37986, 14515,
10000, -30536, -22700, 35441, 4272, 20895, 18025, -13654, -12345, -16805, -1957, -1355,
10385, 736, 6956, -2033, 7674, 5475, -15134, 6363, -1458, -6353, 1458, 024, -8636, 5094,
7988, -7446, -6114, -165, -2257, 3873, 682, 123, 2535, 937, 1093, 542, -2632, 194, -464, 248,
762,112, -1173, -2088, -688, 983, -1811, -1971, 1017, 1622, 936, 761, -1125, -1276, -487,
-006, 558, 976, -2011, 358, 1269, -694, 1267, 501, -672, -1076, -816, -125, 81, 876, 292,
-666, -773, -922, 601, -217, -612, 219, 142, 01, -235, 446, -015, 476, 306, -658, 029, -101,
206, -347, 377, -086, -021, -231, -209, -793, 295, -16, 026, -188, 144, 144, 077, -031, -227,
029, 09, -079, -058, 053, -269, 18, -108, 016, -158, 096, -19, 399, -139, -215, -029, -055, 021,
023, 089, 238, -038, -263, 096, 061, -03, 04, 046, 001, -035, 002, -036, 028, 008, -087, -049,
034, -008, 088, -016, -088, -076, 03, 033, 028, 172, -043, -054, 118, -107, -037, -004, 075,
063, -026, 021, 035, 053, -005, 038, 041, -022, -01, -057, -018, -082/

CHPOS - SECULAR VARIATION (Definitive calculated secular variations)

data lgt/
11612,16526,-26746,-11764,-4270,-22808,2082,-12060,710,-4142,7692,-2858,-3594,-7756,
-2462,-1578,2202,882,-8814,2840,4606,3862,-2120,-872,-774,576,372,-1738,
1752,-902,1078,976,3912,1104,-562,-164,-174,-114,-164,-2114,1988,-418,
-1650,-546,-296,556,1654,892,112,-108,668,-580,274,1302,-56,340,
-78,218,-780,-756,-258,596,272,-78,118,-72,-554,170,258,400,
-246,460,288,98,298,-130,-560,404,266,340,-16,-62,-86,-26,
-236,334,16,-376,-84,-324,148,98,-26,-66,-156,-352,330,-172,
200,46,-24,108,-106,-40,256,50,-2,-64,-122,-128,-124,10,
14,-96,-136,-226,-164,68,-142,-76,20,24,-26,-30,46,42,
22,-40,102,50,-10,0,38,-32,36,-2,-38,-8,-106,-42,
-8,-48,-94,6,16,-64,18,8,30,-50,-50,28,-2,-24,
38,38,12,-2,-8,22,-2,-2,26,2,-56,22,24,-2,
14,-2,-22,2,-6,28,-12,-4,-10,-20,-14,12,-6,6,
-18,16,-22,6,-8,14,12,2,-6,-32,8,-16,6 /

59




CHPO00 (Definitive coefficients)

data 1g/

-296194,-17282,51861,-22677,30684,-24816,16709,-4580,13396, -22880, -2276, 12521,
2934, 7145, -4911, 9323, 7868, 2726, 2500,-2319, -4030, 1198, 1113, -3038, -2188, 3514,
438, 2223, 1719, -1304, -1331,-1686,-393,-129,1063, 723, 682,-174, 742,637, -1609, 651,-59,
-612, 169, 7, -904, 438, 790,-740, -646, 0, -242, 333, 62, 91, 240,69,148,73, -254, -12, -58,
244,66,119, -92,-215, -79,85, -166,-215,91,155,70,89,-79,-149,-70,-21, 50,94,-197,30, 134,
-84, 125,63,-62, -89, -84, -15, 84,93,38,-43,-82,-82,48,-26, -60,17,17,0,-31,40,-5,49,37,-59,
10, -12,20,-29,42,2,3, -22, -11, -74, 27,-17,1,-19,13,15,-9,-1,-26,1, 9,-7,-7,7,-28,17,-9,1,-12,
12, -19, 40, -9,-22,-3, 4, 2, 3, 9, 25, -2,-26,9,7,-5,3,3,0,-3,0, -4,3,-1,-9,-2,-4,-4,8,-2,-9, -
9,3,2,1, 18, -4, -4,13,-10,-4, -1,7,7,-4, 3, 3, 6,-1,3 .4, -2,0,-5,1,-9/

CHPO00 - SECULAR VARIATION (Definitive calculated secular variations)

data lgt/

1295, 1183, -2162, -1391, -414, -2258, -263, -1149, -066, -357, 575, -114, -474, -84, -672,
-235, 223, 189, -787, 133, 463, 507, -226, -031, -164, 06, -022, -267, 167, -123, 193, 011,
395, -013, -049, 026, 027, -059, 051, -179, 191, -029, -174, -047, -046, -009, 081, 143, 018,
-009, 069, -033, 033, 109, 012, 064, 027, 049, -077, -038, -018, 063, 023, 008, 02, -014, -051,
012, 02, 027, -03, 036, 021, 014, 047, -026, -067, 043, 043, 041, 012, 007, -008, 012, -014,
029, 003, -026, -01, -037, 005, 005, -006, -011, -018, -047, 009, -02, 024, 009, -002, 01, -006,
002, 015, 009, 007, -003, -013, -014, -014, 004, 001, -011, -009, -021, -01, -002, -02, -011,
005, 002, 003, 000, 003, -001, 003, -004, 007, 004, 000, -002, 002, -003, 002, 002, -004, 001,
-008, -005, 000, 000, -01, 001, 000, -003, 000, -001, 000, -002, -004, -001, 001, -002, 004,
002, 003, 000, -001, 000, 001, 000, 004, 001, -006, 001, 006, 002, 001, 000, 003, 000, 003,
004, -002, -001, -003, -002, -001, 001, 001, 001, -001, 003, -002, 001, -001, 001, 002, 000,
000, -002, -001, -006, 002/
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CHPIS (Definitive coefficients)

data 1g/

-296920 -17840, 53060, -22000, 30700, -23660, 16810, -4130, 13350,-22670, -2620, 12490,
3020, 7590, -4270, 9400, 7800, 2620, 2900, -2360, -4180, 970, 1220, -3060, -2140, 3520,
460, 2350, 1650, -1180, -1430, -1660, -550, -170, 1070, 680, 670, -170, 680, 720, -1700, 670,
-10, -580, 190, 10, -930, 360, 770, -720, -690, 10, -250, 280, 40, 50, 240, 40, 170, 80, -240,
-20, -60, 250, 60, 110, -60, -210, -90, 80, -140, -230, 90, 150, 60, 110, -50, -160, -70, -40, 40,
90, -200, 30, 150, -100, 120, 80, -60, -80, -80, -10, 80, 100, 50, -20, -80, -80, 30, -30, -60, 10,
20, 0, -40, 40, -10, 50, 40, -50, 20, -10, 20, -20, 50, 10, 10, -20, 0, -70,75*0/

CHPIS - SECULAR VARIATION (Definitive calculated secular variations)

data 1gt/

1452,1116,-2398,-1354,-32,-2312,-202,-900,92,-420, 688,62,-172,-890,-1282,-154,136,212,
-800, 82, 300, 56, -214, 44, -96,-12,-44,-254,138,-248, 198, -52, 314, 82, -14, 86, 24, -8, 124,
-166, 182, -38, -98, -64, -42, -6, 52, 156, 40, -40, 88, -20, 16, 106, 44, 82, 0, 58, -44, -14, -28,
16, 4, -12, 12, 18, -64, -10, 22, 10, -52, 30, 2, 10, 20, -42, -58, 22, 0, 38, 20, §, 6, 0, -32, 32,
10, -34, -4, -18, -8, -10, 8, -14, -24, -46, -4, -4, 36, 8, 0, 14, -6, 0, 18, 0, 10, -2, -6, -18, -20, -4,
0,-18, -16, -16, -14, -4, -22, -8, 54, -34, 2, -38, 26, 30, -18, -2, -52,2, 18, -14, -14, 14, -56, 34,
-18, 2, -24, 24, -38, 80, -18, -44, -6, -8, 4, 6, 18, 50, -4, -52, 18, 14, -10, 6, 6, 0, -6, 0, -8, 6,
-2,-18, -4, -8, -8, 16, -4, -18, -18, 6, 4, 2, 36, -8, -8, 26, -20, -8, -2, 14, 14,-8, 6, 6, 12, -2, 6, 8,
-4,0,-10, 2, -18/
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CHP90 (Definitive coefficients)

data 1g/

-29775,-1848,5406,-2131,3059,-2279,1686,-373,1314,-2239, -284, 1248, 293, 802,-352, 939,
780, 247, 325, -240, -423, 84, 141, -299,-214, 353, 46, 245, 154, -109, -153, -165, -69, -36,
97, 61, 65, -16, 59, 82, -178, 69, 3, -52, 18, 1, -96, 24, 77, -64, -80, 2, -26, 26, 0, -1, 21, 5, 17,
9,-23,0,-4,23,5,10,-1,-19,-10, 6, -12, -22, 3, 12,4, 12, 2, -16, -6, -10, 4, 9, -20, 1, 15, -12,
11,9,-7,-4,-7,-2,9,7,8,1,-7,-6,2,-3,-4,2,2,1,-5,3,-2,6,4,-4,3,0,1,-2,3,3,3,-1, 0,
-6/

CHPS8S5 (Definitive coefficients)

data Ig/

-29873,-1905, 5500,-2072, 3044,-2197, 1687, -306, 1296,-2208, -310, 1247, 284, 829, -297,
936, 780, 232, 361, -249, -424, 69, 170, -297, -214, 355, 47, 253, 150, -93, -154, -164, -75,
-46, 95, 53, 65, -16, 51, 88, -185, 69, 4, -48, 16, -1, -102, 21, 74, -62, -83, 3, -27, 24, -2, -6,
20, 4,17, 10, -23,0, -7, 21,6, 8,0, -19, -11, 5, -9, -23, 4, 11, 4, 14, 4, -15, -4, -11, 5, 10, -21,
1,15,-12,9,9,-6,-3,-6,-1,9,7,9,1,-7,-5,2,-4,-4,1,3,0,-5,3,-2,6,5,-4,3,0, 1, -1, 2,
4,3,0,0,-6/

CHP80 (Definitive coefficients)

data lg/

-29992, -1956, 5604, -1997, 3027, -2129, 1663, -200, 1281, -2180, -336, 1251, 271, 833,-252,
938, 782,212, 398, -257, -419, 53, 199, -297, -218, 357, 46, 261, 150, -74, -151, -162, -78-48,
92,48, 66, -15, 42,93, -192, 71, 4, -43, 14, -2, -108, 17, 72, -59, -82, 2, -27, 21, -5, -12, 16, 1,
18,11,-23, -2,-10, 18, 6, 7, 0, -18, -11, 4, -7, -22, 4, 9, 3, 16, 6, -13, -1, -15, 5, 10, -21, 1, 16,
-12,9,9, -5, -3, -6,-1,9, 7, 10, 2, -6, -5, 2, -4, -4, 1, 2,0, -5, 3,-2,6,5,-4,3,0, 1, -1, 2, 4, 3,
0,0, -6/

CHP75 (Definitive coefficients)

data 1g/

-30100,-2013, 5675,-1902, 3010,-2067,1632, -68,1276,-2144, -333, 1260, 262, 830, -223,
946, 791, 191, 438, -265, -405, 39, 216, -288, -218, 356, 31, 264, 148, -59, -152, -159, -83,
-49, 88, 45, 66, -13, 28, 99, -198, 75, 1, -41, 6, -4,-111, 11, 71, -56, -77, 1, -26, 16, -5, -14, 10,
0,22,12,-23,-5,-12, 14,6, 6, -1, -16,-12, 4, -8, -19, 4, 6, 0, 18, 10, -10, 1, -17, 7, 10, -21, 2,
16, -12,7, 10, -4,-1,-5,-1, 10, 4,11, 1, -3, -2, 1,-3,-3, 1,2, 1,-5,3,-2,4,5,-4,4,-1, 1, -1, 0,
3,3,1,-1,-5/

CHP70 (Definitive coefficients)

data lg/

-30220, -2068, 5737, -1781,3000,-2047,1611, 25,1287, -2091, -366, 1278, 251, 838, -196,
952, 800, 167, 461, -266, -395, 26, 234, -279, -216, 359, 26, 262, 139, -42, -139, -160, -91,
-56, 83, 43, 64, -12, 15, 100, -212, 72, 2, -37, 3, -6,-112, 1, 72, -57, -70, 1, -27, 14, -4, -22, 8,
-2,23,13,-23,-2,-11, 14,6, 7, -2, -15, -13, 6, -3, -17, 5, 6, 0, 21, 11, -6, 3, -16, 8, 10, -21, 2,
16, -12, 6, 10,-4, -1,-5,0, 10,3, 11, 1,-2, -1, 1,-3,-3, 1,2, 1,-5,3,-1,4,6,-4,4,0, 1, -1, 0,
3,3,1,-1, -4/

62




CHP6S (Definitive coefficients)

data 1g/

-30334,-2119, 5776,-1662, 2997,-2016, 1594, 114, 1297,-2038, -404, 1292, 240, 856, -165,
957, 804, 148, 479, -269, -390, 13, 252, -269, -219, 358, 19, 254, 128, -31, -126, -157, -97,
-62, 81, 45, 61, -11, 8, 100, -228, 68, 4, -32, 1, -8, -111, -7, 75, -57, -61, 4, -27, 13, -2, -26, 6,
-6, 26, 13, -23, 1, -12, 13, 5,7, -4, -12, -14,9, 0, -16, 8, 4, -1, 24, 11, -3, 4, -17, 8, 10, -22, 2,
15,-13, 7,10, -4, -1, -5, -1, 10, 5, 10, 1, -4,-2,1,-2,-3,2,2,1,-5,2,-2,6,4,-4,4,0,0, -2, 2,
3,2,0,0,-6/

CHP60 (Definitive coefficients)

data Ig/

-30421,-2169, 5791,-1555, 3002,-1967, 1590, 206, 1302,-1992, -414, 1289, 224, 878, -130,
957, 800, 135, 504, -278, -394, 3, 269, -255, -222, 362, 16, 242, 125, -26, -117, -156, -114,
-63, 81, 46, 58, -10, 1, 99, -237, 60, -1, -20, -2, -11, -113, -17, 67, -56, -55, 5, -28, 15, -6, -32,
7,-7,23,17,-18,8, -17, 15, 6, 11, -4, -14, -11, 7, 2, -18, 10, 4, -5, 23, 10, 1, 8, -20, 4, 6, -18,
0,12,-9,2,1,0,4,-3,-1,9,-2,8,3,0,-1,5,1,-3,4,4,1,0,0,-1,2,4,-5,6, 1, 1, -1, -1, 6, 2,
0,0, -7/

CHPS5S5 (Definitive coefficients)

data lg/

-30500,-2215, 5820,-1440, 3003,-1898, 1581, 291, 1302,-1944, -462, 1288, 216, 882, -83,
958, 796, 133, 510, -274, -397, -23, 290, -230, -229, 360, 15, 230, 110, -23, -98, -152, -121,
-69, 78, 47, 57, -9, 3, 96, -247, 48, -8, -16, 7, -12, -107, -24, 65, -56, -50, 2, -24, 10, -4, -32, &,
-11, 28,9, -20, 18, -18, 11, 9, 10, -6, -15, -14, 5, 6, -23, 10, 3, -7, 23,6, -4, 9, -13, 4, 9, -11, -4,
12,-5,7,2,6,4,-2,1,10,2,7,2,-6,5,5,-3,-5,-4,-1,0,2,-8,-3,-2,7,-4,4,1,-2,-3,6, 7,
-2,-1,0,-3/

CHPS0 (Definitive coefficients)

data 1g/

-30554,-2250, 5815,-1341, 2998,-1810, 1576, 381, 1297,-1889, -476, 1274, 206, 896, -46,
954, 792, 136, 528, -278, -408, -37, 303, -210, -240, 349, 3, 211, 103, -20, -87, -147, -122,
-76, 80, 54, 57, -1, 4, 99, -247, 33, -16, -12, 12, -12, -105, -30, 65, -55, -35, 2, -17, 1, 0, -40,
10, -7, 36, 5, -18, 19, -16, 22, 15, 5, -4, -22, -1, 0, 11, -21, 15, -8, -13, 17, 5, -4, -1, -17, 3, -7,
-24,-1, 19, -25, 12, 10, 2, 5, 2, -5, 8, -2, 8, 3, -11, 8, -7, -8, 4, 13, -1, -2, 13, -10, -4, 2, 4, -3,
12,6,3,-3,2,6,10,11, 3,8/

CHP45 (Definitive coefficients)

data lg/

-30594,-2285, 5810,-1244, 2990,-1702, 1578, 477, 1282,-1834, -499, 1255, 186, 913, -11,
944, 776, 144, 544, -276, -421, -55, 304, -178, -253, 346, -12, 194, 95, -20, -67, -142, -119,
-82, 82, 59, 57, 6, 6, 100, -246, 16, -25, -9, 21, -16, -104, -39, 70, -40, -45, 0, -18, 0, 2, -29, 6,
-10, 28, 15, -17, 29, -22, 13, 7, 12, -8, -21, -5, -12,9,-7, 7, 2, -10, 18, 7, 3, 2, -11, 5, -21, -27,
1,17,-11, 29, 3, -9, 16,4, -3,9, 4,6,-3,1,-4,8,-3, 11,5, 1, 1, 2, -20, -5, -1, -1, -6, 8, 6, -1,
-4,-3,-2,5,0,-2,-2/
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IGRF20 (Interim coefficients)

data Ig/
10,-294048,-24996,13632,9030,-2343,660,806,237,50,-19,30,-20,1,
46525,-14509,29820,-23812,8095,3632,655,-767,97,84,-62,-14,-1,-9,
-29916,-7346,16770,12362,863,1878,729,-82,-176,29,-1,-25,5,5,
-821,2419,-5434,5257,-3094,-1407,-1215,565,-5,-15,17,23,13,7,
2819,-1584,1997,-3497,480,-1512,-362,158,-211,-11,-9,-9,-12,-3,
477,2083,-1212,323,989,135,135,64,153,-132,7,3,7.8,
-191,251,528,-645,89,681,-647,-72,137,11,-9,-7,3,0,
-515,-169,22,235,-22,-272,-18,98,-165,88,19,-1,5,8,
84,-153,128,-117,149,36,-69,28,-3,-93,14,14,-3,0,
-234,110,98,-51,-63,78,4,-14,96,-119,-24,-6,-5 4,
34,-2,36,48,-86,-1,-43,-34,-1,-88,-38,2,1,1,
0,25,-6,-4,6,-2,-17,-16,-30,-20,-26,31,-11,5,
-12,5,14,-18,1,8,-2,6,2,-9,0,5,-3,-5,
-9,6,14,-4,-13,-1,3,-1,5,5,-4,-4,-6,-4 /

IGRF20 - SECULAR VARIATION (Interim coefficients)

data lgt/

10, 57,-110,22,-12,-3,-5,-1,0,0,0,0,0,0,
-259,74,-70,-59,-16,5,-3,-2,1,0,0,0,0,0,
-302,-224,-21,31,-59,-6,4,0,-1,0,0,0,0,0,
60,-11,5,-120,52,2,13,7,4,0,0,0,0,0,
-1,65,36,-50,-51,13,-14,1,-1,0,0,0,0,0,
0,25,-6,30,3,9,0,-5,4,0,0,0,0,0,
0,-16,-13,8,0,10,9,-8,3,0,0,0,0,0,
6,6,-8,-2,-11,1,3,8,-1,0,0,0,0,0,
-2,6,-2,5,-3,-4,5,0,4,75*0/
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DGRF15 (Definitive coefficients)

data Ig/

100 -2944146,-244588,135033,90742,-23291,6955,8129,2398,533,-201,300,-209,-2,
479599,-150177,301220,-235226,81368,36014,6757,-7599,889,883,-626,-140,-16,-92,
-284541,-64217,167635,122585,12049,19235,7279,-679,-1678,302,17,-230,46,42,
-11529,24504,-53870,58169,-33485,-14094,-12985,5182,-316,-322,55,208,123,63,
28354,-18843,18095,-32923,7038,-15740,-2893,1507,-2056,67,-55,-79,-89,-42,
4698,19698,-11914,1598,10012,430,1314,932,1333,-1320,170,58,85,96,
-2061,3330,5874,-6664,735,6241,-7085,-288,1176,-10,-67,-70,10,-19,
-5427,-1953,559,2445,327,-2750,-232,661,-1598,868,213,14,54,81,
1004,-1826,1318,-1460,1616,569,-910,226,-202,-906,233,170,-37,-13,
-2177,1076,1174,-674,-688,779,104,-389,844,-1054,-180,-22,-43,38,
328,-40,455,440,-792,-61,-416,-285,-112,-872,-359,44,22 8,
0,211,-60,-105,76,-20,-212,-144,-257,-201,-234,349,-94,46,
-108,37,175,-219,27,72,-9,29,23,-89,-16,72,-3,-35,
-88,49,156,-50,-124,-10,42,-4,48,48,-30,-43,-71,-36 /

DGRF15 - SECULAR VARIATION (Interim calculated secular variations)

data lgt/

1000, 7332,-10744,2574,-884,-278,-710,-138,-56,-66,22,0,18,24,
-28698,10174,-6040,-5788,-836,612,-414,-142,162,-86,12,0,12,4,
-29238,-18486,130,2070,-6838,-910,22,-282,-164,-24,-54,-40,8,16,
6638,-628,-940,-11198,5090,48,1670,936,532,344,230,44,14,14,
-328,6006,3750,-4094,-4476,1240,-1454,146,-108,-354,-70,-22,-62,24,
144,2264,-412,3264,-244,1840,72,-584,394,0,-200,-56,-30,-32,
302,-1640,-1188,428,310,1138,1230,-864,388,240,-46,0,40,38,
554,526,-678,-190,-1094,60,104,638,-104,24,-46,-48,-8,-2,
-328,592,-76,580,-252,-418,440,108,344,-48,-186,-60,14,26,
-326,48,-388,328,116,2,-128,498,232,-272,-120,-76,-14,4,
24,40,-190,80,-136,102,-28,-110,204,-16,-42,-48,-24,4,
0,78,0,130,-32,0,84,-32,-86,2,-52,-78,-32,8,
-24,26,-70,78,-34,16,-22,62,-6,-2,32 ,-44,-54,-30,
-4,22,-32,20,-12,0,-24,-12,4,4,-20,6,22,-8 /
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DGRF10 (Definitive coefficients)

data Ig/
100,-2949657,-239606,133985,91266,-23087,7278,8044,2441,550,-194,305,-212,-9,
494426,-158642,302634,-232654,80897,35729,6869,-7500,821,945,-624,-148,-21,-89,
-270854,-57573,166817,123210,16658,20026,7592,-455,-1450,345,89,-203,30,31,
-16040,25175,-53703,63373,-35683,-14105,-14140,4524,-559,-527,-107,165,104,42,
28648,-21103,16446,-30972,8940,-16317,-2283,1400,-1934,313,-16,-51,-63,-45,
4458,18901,-11806,-1,10104,-803,1310,1046,1161,-1238,245,54,95,108,
-2090,4418,6154,-6626,302,5540,-7809,164,1085,-76,-33,-79,-11,-31,
-5780,-2120,654,2496,703,-2761,-328,492,-1405,843,213,37,52,78,
1084,-2003,1183,-1741,1671,696,-1074,164,-354,-842,309,179,-39,-18,
-2054,1151,1275,-714,-742,797,214,-608,701,-1008,-103,12,-37,38,
273,-10,471,444,-722,-96,-395,-199,-197,-831,-280,75,21,2,
13,167,-66,-176,85,-39,-251,-127,-211,-194,-186,375,-77,42,
-87,27,213,-249,49,59,0,13,27,-86,-23,87,4,-26,
-87,30,166,-59,-114,-7,54,10,49,44,-25,-53,-79,-26 /

DGRF10 - SECULAR VARIATION (Definitive calculated secular variations)

data lgt/

1000, -9964,2096,-1048,-408,-646,170,-86,-34,-14,-10,6,14,
-29654,16930,-2828,-5144,942,570,-224,-198,136,-124,-4,16,10,-6,
-27374,-13288,1636,-1250,-9218,-1582,-626,-448,-456,-86,-144,-54,32,22,
9022,-1342,-334,-10408,4396,22,2310,1316,486,410,324,86,38,42,
-588,4520,3298,-3902,-3804,1154,-1220,214,-244,-492,-78,-56,-52,6,
480,1594,-216,3198,-184,2466,8,-228,344,-164,-150,8,-20,-24,
58,-2176,-560,-76,866,1402,1448,-904,182,132,-68,18,42,24,
706,334,-190,-102,-752,22,192,338,-386,50,0,-46,4,6,
-160,354,270,562,-110,-254,328,124,304,-128,-152,-18,4,10,
-246,-150,-202,80,108,-36,-220,438,286,-92,-154,-68,-12,0,
110,-60,-32,-8,-140,70,-42,-172,170,-82,-158,-62,2,12,
-26,88,12,142,-18,38,78,-34,-92,-14,-96,-52,-34,8,
-42,20,-76,60,-44,26,-18,32,-8,-6,14,-30,-14,-18,
-2,38,-20,18,-20,-6,-24,-28,-2,8,-10,20,16,-20 /
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DGRF05 (Definitive coefficients)

data 1g/

100,-2955463,-233724,13363,92055,-22700,736, 7988,248,558,-217,295,-215,-016,507799,
-166905,304769,-230583,79796,35441,6956,-7446,762,976,-612,-16,-029,-088,-25945,
-51543,165776,124639,21065,20895,7674,-165,-1173,358,142,-188,021,03,-19886,26972,
-52472,67251,-37986,-13654,-15134,3873,-688,-694,-235,144,089,028,28207,-22523,14515,
-30536,10000,-16805,-1458,123,-1811,501,-015,-031,-038,-043,4272,18025,-12345,-1957,
10385,-1355,1458,937,1017,-1076,306,029,096,118,-2033,5475,6363,-6353,024,5094,-8636,
542,936,-125,029,-079,-03,-037,-6114,-2257,682,2535,1093,-2632,-464,194,-1125,876,206,
053,046,075,112,-2088,983,-1971,1622,761,-1276,-006,-487,-666,377,18,-035,-026,-2011,
1269,1267,-672,-816,81,292,-773,601,-922,-021,016,-036,035,219,01,446,476,-658,-101,
-347,-086,-231,-793,-209,096,008,-005,026,144,-077,-227,09,-058,-269,-108,-158,-19,-139,
399,-049,041,-055,023,238,-263,061,04,001,002,028,-087,-034,088,-008,-01,-076,033,172,
-054,-107,-004,063,021,053,038,-022,-057,-082,-018/

DGRF05 - SECULAR VARIATION (Definitive calculated secular variations)

data lgt/
1000,11612,-11764,710,-1578,-774,-164,112,-78,-16,46,20,6,14,
-26746,16526,-4270,-4142,2202,576,-174,-108,118,-62,-24,24,16,-2,
-22808,-12060,2082,-2858,-8814,-1738,-164,-580,-554,-26,-106,-30,18,2,
7692,-3594,-2462,-7756,4606,-902,1988,1302,258,334,256,42,30,28,
882,2840,3862,-872,-2120,976,-1650,340,-246,-376,-2,-40,-50,-4,
372,1752,1078,3912,-562,1104,-296,218,288,-324,-122,50, -2,-20,
-114,-2114,-418,-546,556,892,1654,-756,298,98,-124,0,38,12,
668,274,-56,-78,-780,-258,272,596,-560,-66,14,-32,12,6,
-72,170,400,460,98,-130,404,340,266,-352,-136,-2,-8,16,
-86,-236,16,-84,148,-26,-156,330,200,-172,-164,-8,-2,6,
108,-40,50,-64,-128,10,-96,-226,68,-76,-142,-42,26,14,
-26,46,22,102,-10,38,36,-38,-106,-8,-94,-48,-56,2,

-64, 8,-50,28,-24,38,-2,22,-2,2.22,-2.24,-32,
-22,-6,-12,-10,-14,-6,-18,-22,-8,12,-6,8,6,-16 /
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DGRF00 (Definitive coefficients)

data 1g/

10, -296194, -22677, 13396, 9323, -2188, 723, 790, 244, 50,-26,27,-22,-2, 51861,-17282,
30684, -22880, 7868, 3514,682,-740,66,94,-60, -17,-3, -9, -24816, -4580, 16709, 12521,
2500, 2223,742,0, -92, 30, 17, -19, 2, 3, -2276, 2934, -4911,7145,-4030,-1304,-1609, 333,
-79,  -84,-31,159,1, 2726,  -2319,1198,-3038,1113,-1686,-59,91,-166,63,-5,-1,-2,-4,
438,1719,-1331,-393,1063, -129, 169, 69,91,-89,37,1,9,13, -174,637,651,-612,7,438, -904,
73,70,-15,10,-7,-5,-4, -646, -242, 62, 240, 148, -254,-58,-12,-79,93,20,7,3,7, 119,-215, 85,
-215, 155, 89,-149,-21,-70,-43,42,17, -3,-4, -197, 134,125,-62,-84,84,38,-82,48,-82,3,1,-4,3,
17, 0,40,49,-59,-12,-29,2,-22,-74,-11,12, -1,-1, 1,13, -9,-26,9,-7,-28,-9,-12,-19,-9,40,-2.4, -4,
3,25,-26,7,3,0,0,3,-9,-4,8,-4,0, -9,2,18,-4, -10, -1, 7, 3, 6, 3,-2,-5,-9,1/

DGRF00 - SECULAR VARIATION (Definitive calculated secular variations)

data lgt/
100,1295,-1391,-066,-235,-164,026,018,008,012,009,005,001,001,-2162,1183,-414,-357,
223,06,027,-009,02,007,-002,002,000,000,-2258,-1149,-263,-114,-787,-267,051,-033,-051,
012,-006,000,000,000,575,-474,-672,-84,463,-123,191,109,02,029,015,-001,000,004,189,133,
507,-031,-226,011,-174,064,-03,-026,007,-004,-004,-001,-022,167,193,395,-049,-013,-046,
049,021,-037,-013,004,001,-002,-059,-179,-029,-047,-009,143,081,-038,047,005,-014,-002,
004,001,069,033,012,027,-077,-018,023,063,-067,-011,001,-003,003,001,-014,012,027,036,
014,-026,043,041,043,-047,-009,002,-001,003,-008,-014,003,-01,005,-006,-018,009,024,-02,
-01,001,001,001,01,002,009,-003,-014,004,-011,-021,-002,-011,-02,-005,004,001,003,003,
003,007,000,002,002,-004,-008,000,-01,000,-006,000,-003,-001,-002,-001,-002,002,000,000,
000,001,001,002,006,-002,003,003,-002,-003,-001,001,-001,-002,-001,002,000,-001,002,-006
/

68




DGRF95 (Definitive coefficients)

data 1g/

10,-296920,-22000,13350,9400,-2140,680,770,250,40,-30,3*0, 53060,-17840,30700, -22670,
7800,3520,670,-720,60,90,-60,3*0, -23660,-4130,16810,12490,2900,2350,680,10, -60, 30,20,
3*0, -2620,3020,-4270,7590,-4180,-1180,-1700,280,-90,-100,-40,3*0, 2620,-2360,970,-3060,
1220,-1660,-10,50,-140,80,-10,3*0, 460,1650,-1430,-550,1070,-170,190, 40, 90, -80, 40, 3*0,
-170, 720,670,-580,10,360,-930,80,60,-10,20,3*0, -690,-250,40,240,170,-240,-60,-20,-50,
100, 20,3*0, 110,-210,80,-230,150,110,-160,-40,-70,-20,50,3*0, -200,150,120,-60,-80,80,
50,-80, 30, -80,10,3*0, 10,0,40,50,-50,-10,-20,10,-20,-70,0,45*0/

DGRF9S - SECULAR VARIATION (Definitive calculated secular variations)

data lgt/

100, 1452, -1354, 92, -154, -96, 86, 40, -12, 20, 8, 54, -44, -4, -2398, 1116, -32, -420, 136,
-12, 24, -40, 12, 8, 0, -34, -6, -18, -2312, -900, -202, 62, -800, -254, 124, -20, -64, 0, -6, -38,
4,6, 688, -172, -1282, -890, 300, -248, 182, 106, 22, 32, 18, 30, 18, 2, 212, 82, 456, 44, -214,
-52, -98, 82, -52, -34, 10, -2, -4, -8, -44, 138, 198, 314, -14, 82, -42, 58, 2, -18, -6, 2, 18, 26,
-8, -166, -38, -64, -6, 156, 52, -14, 20, -10, -20, -14, -10, -8, 88, 16, 44, 0, -44, -28, 4, 16, -58,
-14, 0, 14, 6, 14, 18, -10, 10, 30, 10, -42, 22, 38, 0, -46, -16, 34, -6, -8, 6, -32, 10, -4, -8, 8,
-24,-4,36,-4,-14,2,-8,6, 14,0, 0, -2, -18, -4, -18, -16, -4, -8, -22, 24, -2, -2, 2, 26, -18, -52,
18, -14, -56, -18, -24, -38, -18, 80, -4, 8, -8, 6, 50, -52, 14, 6, 0, 0, 6, -18, -8, 16, -8, 0, -18, 4,
36, -8, -20, -2, 14,6, 12, 6, -4, -10, -18, 2/
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DGRF90 (Definitive coefficients)

data 1g/

1,-29775,-2131, 1314, 939, -214, 61, 77, 23, 4, -3, 5406, -1848, 3059,-2239, 780, 353, 65,
-64, 5, 9, -4, -2279, -373, 1686, 1248, 325, 245, 59, 2, -1, 1, 2, -284, 293, -352, 802, -423,
-109, -178, 26, -10, -12, -5, 247, -240, 84, -299, 141, -165, 3, -1, -12, 9, -2, 46, 154, -153, -69,
97, -36, 18, 5, 3, -4, 4, -16, 82, 69, -52, 1, 24, -96, 9, 4, -2, 3, -80, -26, 0, 21, 17, -23, -4, 0, 2,
7, 1,10, -19, 6, -22, 12, 12, -16, -10, -6, 1, 3, -20, 15, 11, -7,-7,9, 8, -7,2,-6,3,2, 1, 3, 6, -4,
0,-2,3,-1,-6,0/

DGREFS8S (Definitive coefficients)

data Ig/

1, -29873, -2072, 1296, 936, -214, 53, 74, 21, 5, -4, 5500, -1905, 3044,-2208, 780, 355, 65,
-62, 6, 10, -4, -2197, -306, 1687, 1247, 361, 253, 51, 3, 0, 1, 3, -310, 284, -297, 829, -424,
-93, -185, 24, -11, -12, -5, 232, -249, 69, -297, 170, -164, 4, -6, -9, 9, -2, 47, 150, -154, -75,
95, -46, 16,4, 4, -3, 5, -16, 88, 69, -48, -1, 21, -102, 10, 4, -1, 3, -83, -27, -2, 20, 17, -23, -7, 0,
4,7,1,8,-19,5,-23, 11, 14, -15, -11, -4, 1, 2, -21, 15,9, -6, -6, 9,9, -7, 2, -5, 3, 1, 0, 3, 6, -4,
0,-1,4,0,-6,0/

DGRF80 (Definitive coefficients)

data lg/

1, -29992, -1997, 1281, 938, -218, 48, 72, 18, 5, -4, 5604, -1956, 3027,-2180, 782, 357, 66,
-59, 6, 10, -4, -2129, -200, 1663, 1251, 398, 261, 42, 2, 0, 1, 2, -336, 271, -252, 833, -419,
-74,-192, 21, -11, -12, -5, 212, -257, 53, -297, 199, -162, 4, -12, -7, 9, -2, 46, 150, -151, -78,
92,-48,14,1,4,-3,5,-15,93, 71, -43,-2, 17, -108, 11, 3, -1, 3, -82, -27, -5, 16, 18, -23, -10,
-2,6,7,1,7,-18,4,-22,9, 16, -13, -15, -1, 2, 2, -21, 16, 9, -5, -6, 9, 10, -6, 2, -5, 3, 1, 0, 3, 6,
-4,0,-1,4,0, -6, 0/

DGREF75 (Definitive coefficients)

data 1g/

1,-30100,-1902, 1276, 946, -218, 45, 71, 14, 7, -3, 5675,-2013, 3010,-2144, 791, 356, 66, -56,
6, 10, -3, -2067, -68, 1632, 1260, 438, 264, 28, 1, -1, 2, 2, -333, 262, -223, 830,-405, -59,
-198, 16, -12, -12, -5, 191, -265, 39, -288, 216, -159, 1, -14, -8, 10, -2, 31, 148, -152, -83, 88,
-49,6,0,4,-1,5,-13,99, 75, 41, -4, 11, -111, 12, 0, -1, 4, -77, -26, -5, 10, 22, -23, -12, -5,
10,4, 1,6, -16,4, -19, 6, 18, -10,-17, 1, 1, 0, -21,16, 7,-4, -5, 10, 11, -3, 1,-2,3, 1, 1, 3, 4, -4,
-1,-1,3,1,-5, -1/

DGRF70 (Definitive coefficients)

data lg/

1,-30220,-1781, 1287, 952, -216, 43, 72, 14, 8, -3, 5737, -2068, 3000,-2091, 800, 359, 64,
-57, 6, 10, -3, -2047, 25, 1611, 1278, 461, 262, 15, 1, -2, 2, 2, -366, 251, -196, 838, -395, -42,
-212, 14, -13, -12, -5, 167, -266, 26, -279, 234, -160, 2, -22, -3, 10, -1, 26, 139, -139, -91, 83,
-56,3,-2,5,-1,6,-12, 100, 72, -37, -6, 1, -112, 13, 0, 0, 4, -70, -27, -4, 8, 23, -23, -11, -2, 11,
3,1,7,-15,6,-17, 6, 21, -6, -16, 3, 1, 0, -21, 16, 6, -4, -5, 10, 11, -2, 1,-1,3, 1, 1, 3,4, -4, 0,
-1,3,1,-4,-1/
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DGRF65 (Definitive coefficients)

data 1g/

1,-30334,-1662, 1297, 957, -219, 45, 75, 13, 8, -2, 5776, -2119, 2997,-2038, 804, 358, 61,
-57, 5, 10, -3, -2016, 114, 1594, 1292, 479, 254, 8, 4, -4, 2, 2, -404, 240, -165, 856, -390, -31,
-228, 13, -14, -13, -5, 148, -269, 13, -269, 252, -157, 4, -26, 0, 10, -2, 19, 128, -126, -97, 81,
-62, 1, -6, 8, -1, 4, -11, 100, 68, -32, -8, -7, -111, 13, -1, -1, 4, -61, -27, -2, 6, 26, -23, -12, 1,
11,5,0,7,-12,9,-16,4,24,-3,-17,4,1,2,-22, 15,7, -4, -5, 10, 10, -4, 1,-2,2,2, 1, 2, 6, -4,
0,-2,3,0,-6,0/

DGRF60 (Definitive coefficients)

data Ig/

1,-30421,-1555, 1302, 957, -222, 46, 67, 15, 4, 1, 5791, -2169, 3002,-1992, 800, 362, 58, -56,
6, 6, -3, -1967, 206, 1590, 1289, 504, 242, 1, 5, -4, 0, 4, -414, 224, -130, 878, -394, -26, -237,
15, -11, -9, 0, 135, -278, 3, -255, 269, -156, -1, -32,2, 1, -1, 16, 125, -117, -114, 81, -63, -2,
-7, 10, 4, 4, -10, 99, 60, -20, -11, -17, -113, 17, -5, -1, 6, -55, -28, -6, 7, 23, -18, -17, 8, 10, -2,
1,11,-14,7,-18,4, 23, 1, -20, 8, 3, -1, -18, 12, 2,0, -3,9, 8,0, 5, -1, 2,4, 1,0, 2, -5, 1, -1, 6,
0,-7,0/

DGREFS5S (Definitive coefficients)

data lg/

1,-30500,-1440, 1302, 958, -229, 47, 65, 11, 4, -3, 5820, -2215, 3003,-1944, 796, 360, 57,
-56, 9,9, -5, -1898, 291, 1581, 1288, 510, 230, 3, 2, -6, -4, -1, -462, 216, -83, 882, -397, -23,
-247, 10, -14, -5, 2, 133, -274, -23, -230, 290, -152, -8, -32, 6, 2, -3, 15, 110, -98, -121, 78,
-69,7,-11, 10,4, 7, -9, 96, 48, -16, -12, -24, -107, 9, -7, 1, 4, -50, -24, -4, 8, 28, -20, -18, 18,
6, 2,-2,10, -15, 5, -23, 3,23, 4, -13,9, 2,6, -11, 12, 7, 6, -2, 10, 7, -6, 5, 5, -2, -4, 0, -8, -2,
-4,1,-3,7,-1,-3,0/

DGRF50 (Definitive coefficients)

data 1g/

1,-30554,-1341, 1297, 954, -240, 54, 65, 22, 3, -8, 5815, -2250, 2998,-1889, 792, 349, 57,
-55,15,-7,4, -1810, 381, 1576, 1274, 528, 211, 4, 2, -4, -1, -1, -476, 206, -46, 896, -408, -20,
-247, 1, -1, -25, 13, 136, -278, -37, -210, 303, -147, -16, -40, 11, 10, -4, 3, 103, -87, -122, 80,
-76,12,-7, 15,5, 4, -1, 99, 33, -12, -12, -30, -105, 5, -13, -5, 12, -35, -17, 0, 10, 36, -18, -16,
19,5,-2,3,5,-22,0,-21,-8, 17, -4, -17, -1, 3, 2, -24, 19, 12,2, 2, 8, 8, -11, -7, 8, 10, 13, -2,
-10,2,-3,6,-3,6, 11, 8, 3/

DGRF45 (Definitive coefficients)

data lg/

1,-30594,-1244, 1282, 944, -253, 59, 70, 13, 5, -3, 5810, -2285, 2990,-1834, 776, 346, 57,
-40, 7, -21, 11, -1702, 477, 1578, 1255, 544, 194, 6, 0, -8, 1, 1, -499, 186, -11, 913, -421, -20,
-246, 0, -5, -11, 2, 144, -276, -55, -178, 304, -142, -25, -29, 9, 3, -5, -12, 95, -67, -119, 82,
-82, 21, -10, 7, 16, -1, 6, 100, 16, -9, -16, -39, -104, 15, -10, -3, 8, -45, -18, 2, 6, 28, -17, -22,
29,7,-4,-1,12,-21,-12,-7,2,18,3,-11,2,-3,-3,-27,17,29,-9,4,9,6, 1, 8, -4, 5, 5, 1, -20,
-1,-6,6,-4,-2,0,-2,-2/
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5. EXTERNAL MAGNETIC FIELD MODELS

5.1 INTRODUCTION

Since the early sixties important efforts have been undertaken to model the external magnetic
field, i.e., to describe the comet-like topology of the Magnetosphere. The first realistic model
of the Magnetosphere was published by Mead (1964). This model which could be
summarized as the sum of three terms, dipole + compression term + asymmetry term had a
considerable success among the modelers of "the motion of the charged particles in the
radiation belt". Ten years later was published the first model bases on magnetic field data, the
Mead-Fairfield 1973 model. This model could not properly describe the depletion of the
magnetic field in the ring current region nor the magnetic field in the tail region. New models
were successively developed by Olson and Pfitzer (1974, 1977). The last version varying with
the hour of the day and the season (tilt dependent) remained unpublished. Soon after those
models arrived the series of the Tsyganenko models (1987, 1989 Ae and Kp). These three
models were tilt dependent, showed a nice Neutral Sheet region, but suffered from a poor ring
current description, dayside field line escape and nightside field line flaring. A remedy to
these defects was offered by Tsyganenko with his 1996 V1 model which takes into account
the interplanetary magnetic field as well as the Field Aligned Currents. Two years later we
have developed a simpler model, with not all the features of Tsyganenko 96 but without the
defects of the 1989 Tsyganenko models. In the scope of the present database we have retained
only the following models:

- The Mead 1964 model

- The Mead-Fairfield 1973 model

- The Tsyganenko 1987 model

- The Tsyganenko 1989 Ae and Kp models
- The Kosik 1998 Kp model

- The Tsyganenko 1996 V1 model!*/.

5.2 THE MEAD MODEL

The model developed by Mead in 1964 (Ref. 2) resulted from the determination of the
Magnetopause magnetic field by a self consistent calculation (Beard, 1964): the dipole is
perpendicular to the Solar Wind direction, the angle of the local tangent to the Magnetopause
and the distance to the dipole fulfill the equation:

_ 2 _B?
p=2nmv- cosy = Aﬂ

] available at NSSDC.
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where p is the pressure of the Solar Wind (n being the ion density, m their mass, v their
speed). yis the angle between the normal to the surface and the velocity vector:

Magnetopause

Figure 1

As a result the potential of the magnetic field was developed in a series of spherical
harmonics. The development limited to the second order has been widely used:

2

: 3 .
V=a {a—zglocos 0+-5 cos 6’+§r—2§21 sin 20cos @
r a a

In this expression 7, 6, ¢ are the spherical coordinates, #being the colatitude counted from the

north and ¢ the longitude counted from the midnight meridian. The first term is the dipole

magnetic field (g1 = 0.31 gauss) the second term is an axisymmetric compression term (g, =

0.00025 gauss) and the third term is the noon-midnight asymmetry term (g, = 0.000012
gauss). If we introduce the subsolar distance , we can write these coefficients as:
1 Gy

g =3 and g, = and we have:

0 3 4
V= g_; cosd [P{L] G_g+\/§[LJ G”:)S sin Ocos (p]

r n,) & 4 g

With the change of the subsolar distance the compression and asymmetry terms grow or
diminish. This expression enabled the calculation of various magnetospheric effects like
diffusion, drift echoes,.....
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5.3 THE MEAD-FAIRFIELD MODEL

Mead and Fairfield (Ref. 3) used magnetic field data from several spacecraft (Explorer series
33, 34, 41, 43). The whole set of data extends over 4340 hours of measurements. More than
4.107 measurements where used to produce 12616 average values per 0.5 Re box. Data was
binned into four classes (Kp = 07,0 ,0"), quiet (Kp <2), perturbed (2< Kp < 3) and highly
perturbed (Kp > 3). There was no data for latitudes lower than -50° and for geocentric
distances less than -4Re. A least squares fit with Lagrange multipliers was used to get a series
of coefficients. The magnetic field model is described as a series of polynomials and is tilt
dependent. The tilt parameter T is expressed in units of tens of degrees and the coordinates X,
Y, Z must be expressed in units of tens of earth radii:

By =a,Z+a,XZ+T (ay+a, X +a, X*+a,Y*+a,Z*)
B, =bYZ +T (b,Y +b,XY)
B,=c,+c, X+, X* +¢c,Y* +¢, 2 + T (c,Z+c,XZ)

The coefficients a, b, ¢ are calculated and the magnetic field fulfills the divergence free
condition V. B =0 through a series of constraint equations:

a, +b, +2c, =0
a,+b,+¢c,=0
2a,+b;+c, =0

The coefficients a, b, ¢ are given in Table I:

Table I
Coefficient Kp=0, 0+ Kp<2 Kp>2 Kp >3
a 17.93 21.79 33.16 39.48
az -5.79 -7.03 -6.39 -2.91
as 2.98 3.02 4.30 5.17
a4 -2.57 -2.99 -3.25 -3.86
as -0.30 -0.62 -0.44 -1.04
as -1.47 -1.22 -1.27 -1.29
az 1.05 0.95 0.45 -1.14
b -10.11 -11.84 -16.54 -19.10
by -1.98 -2.57 -3.08 -3.50
bs 0.09 -0.28 0.22 0.23
cl1 -9.41 -11.96 -19.88 -22.70
&) 15.07 17.87 20.23 22.90
c3 13.16 15.88 22.72 26.50
c4 8.36 9.77 13.23 15.54
Cs 7.95 9.43 11.46 11.00
C6 4.55 5.57 6.33 7.36
c7 0.51 1.53 0.67 1.85
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In absence of data measurements near the Earth this model poorly describes the ring current
region.

5.4 THE TSYGANENKO 87 MODEL

The Tsyganenko 1987 model (Ref. 5) is based on a data set of 36682 points. The external
magnetospheric sources taken into account are the ring current, the tail and the Magnetopause
currents.

The ring current model is developed in a cylindrical system aligned with the dipole axis:

12pg
B,=5,. 2 2 )%
(p +¢+4
2 2
B, =4p, 2 P *8
(p2 +¢7+ 4)A
2 2 12 Zsm
where p= M and ¢= RL , Brc 18 a parameter of the model.
RRC RC

The Magnetotail current distribution is based on a continuous series of filaments. Each
filament contributes to the magnetic field:

% b [(x—x0)2+zz]%

1+ (R/DP (x—x,f 42+ D?

This description avoids singularities. The initial tail field model of Tsyganenko (1982) model
was described by these three equations:

z v X x Fl(x,z ﬁz X,z
Bx{m(BN_TABJ Flx, )+27[S G(x, )]f(y)

B, =o.
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where:

F(x, z): atan—N "% _gan N T2

Z+D)/ Z+D)/

(xN—x) +z°+ D’
xy —x—8) +z* +D?
(xy )

B [1 +(%yﬂ_]

D=2Re, Ay=10Re, S=20 Re, x,=-7 Re

G(x, z): Ln

In the 1987 model, Tsyganenko has chosen a more complex expression.

The return currents from the tail are simulated by two additional current sheets parallel to the
central one and located at zgsm = + 30 Re. Each of these two current sheets caries an eastward
current with a density half of the main sheet current density. The mathematical representation
of the tail current system is rather complex and we will not give the expressions here. For the

Magnetopause or distant magnetic field the magnetic field components are expressed as
follows:

[a,zcosy +a, siny]+ o/ layzcos® + (a, + asy® + a2 )siny]

B, = /l[byzcosy/+b2ysml//]+e/2[b yzeosy + (b,y + by’ + byyz Jsiny]
Bzzey1 [(c1 +e,p’ +eyz )COSI//+c4zsinl//]

rol [(c5 eyt + c7zz)cos1// + (cgz +cozy’ + cloz3)sin 1//]

As in the Mead-Fairfield model six additional relations follow from the requirement V.B=0.

The presence of exponentials enable a better representation of the tail region. The general data
set has been divided into 6 subsets from Kp = 0 to Kp > 5. The corresponding coefficients are
obtained by least square methods. The routine tsyg87 corresponds to this model.

77



5.5 THE TSYGANENKO 1989 MODEL

The Tsyganenko 1989 model (Ref. 6) includes several improvements versus the 1987 model.
The tail current sheet is warped and its thickness changes along the Sun-Earth and dawn-dusk
directions. The geometry of the warped tail current sheet is shown in the figures below:

Zsm Zgsm Zgsm
A 4 A
Xgsm /
AN //
\\\ W +5
~ |/ 10 20 J———
Xsm <€ =~ = i i f I >» Ygsm
T -10 10
/ No
/ o~ \ >
/ ~
/ N
/ N
/ ~N
Figure 2

Two versions of the model have been produced:

- The version 1989 Kp for Kp indexes from 0 to 5 (routine ex89kp)
- The version 1989 Ae for Ae indexes from 0 to 400 (routine ex89ae)

5.6 THE KOSIK 98 MODEL

This model has been developed using poloidal vector fields (Ref. 1). These poloidal vector
fields can be expressed in various coordinate systems (cartesian, spherical, cylindrical,...). The
poloidal vector fields are divergence free per construction.

B, =VxVx(P)
In this model the magnetic field of the tail is the single non poloidal part of the model. The

ring current region is described as a sum of two 0-tilt components and a tilt dependent term.
For the 0-tilt components we have:

B, =2¢,, 5,(r) cosé + 6¢,, 5,(r) cos@sin 6 cosg
r r

B,=-¢, (M+%szin0 + \/3021 (¥+O’Sj7(r)} cos26 cosp

r

B, =~ V3¢, (SZ(F) + dSET(r)j cos@ sin @

r

78



For the tilt component we have:

T
B! =c,, 5 (6 cos’ 6 — 2)sin T
r
T T
B) =—c, {S—2+@J sin20sin T
ro o
T
B, =0

2 2 T3
Where  S,(r)=r’e™" . S,(r)=r'e™", 81 (r)=r'c™’

T is the tilt angle, the coefficients cio =-1.5, c21 = 0.11, k1 = 0.04, k> = 0.01, k" = 0.05 were
chosen in order to reproduce the AB contours. The coefficient c2o can be adjusted. The
magnetic field of the distant regions of the Magnetosphere is developed in spherical
harmonics:

n—1
B = % S n (n+ 1)(LJ a,, cosmpP" (8)cosT
n=1 m=0 7,
: #7(6)
B,=> X~ (n+1)(ij a,, cosmp ———cosT
=1 m=0 7, oo
n—1
B,=- % i (n + 1)(LJ a,, sinme .m Pn'”(H)cosT
n=l m=0 Vb Sin 0

coefficients a,, given in Table II are not ichmidt normalized. The return currents are modeled
as poloidal vector fields expressed in cylindrical harmonics:

B = g (J, = J,)bsin 1e*

cp
B, =—(J, —J,)bcos A"’
B, = J,bsin e’

where the angle A is counted from the ygsm axis. Jo and J> are the Bessel functions. The
coefficient b is given in Table II.

The tail field model has been borrowed from the Tsyganenko and Usmanov 1982 model. We
recall their equations:

B | B - BB, | Plrz) e 265 | 1)
7r(z2 +D? )2 5 2
B, =0
1
2 2
B, = (BN—XN_XBTJ 6e2) Bify D) | 1)
S 2z T S
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where:

F(x,z)=tan™

Glx,z)=Ln

(]

Xy —X

(22 +D? )%

—tan

-1 Xy

(22 +D? )%

(xN —x)2 +z2°+ D’

(XN—X—S)Z+ZZ+D2

-1

and

-x-S

S=xy—Xg

Typical values are D=2 Re, Ay= 10 Re, x, = -7 Re, S, B,, B: are the parameters given in Table

II. The model Kosik98 is tilt and Kp dependent for Kp values between 1 and 5.

TABLE II

iopt 1 2 3 4 5
Kp 1-,1+ 2-,2,2+ 3-,3,3+ 4-4,4+ 5-,5,5+
aio 10.98617 9.91009 12.37934 10.32178 3.03703
i 14.72302 16.17999 18.53984 62.21787 -0.61821
aso -3.35283 -4.20870 -4.67247 -63.52502 -0.31021
as» 4.81772 5.52585 6.68590 74.90408 -2.19368
as 0.89381 0.98896 1.24239 41.8594 -0.74172
as -1.71353 -2.40256 -2.91884| -127.25317 -0.56961
aso 0.16678 0.22109 0.20900 27.08902 -0.03409
asy -0.09963 -0.18175 -0.28215 -41.93544 -0.12372
asq 0.07181 0.07170 0.09359 8.13140 -0.07406
b 12. 12. 12. 36. 10.
XN -7. -7. -7. -7. -7.
By 50 40 40 40 50
B, 45. 30. 30. 30. 40.
S 70. 70. 70. 70. 70.
facrc 1.0 1.3 1.5 1.8 2.0
€20 -0.4 -0.4 -0.2666 -0.2666 0.1333
b 25. 30. 35. 50. 60.

This model is more complex than the models Tsyganenko 87 or Tsyganenko 89 but it

correctly describes the ring current region. There is no flaring of the field lines in the night
side nor a field line escape in the dayside. The computing time is about five times longer with
Kosik98 model than with these two models. It is however eight times faster than the new
Tsyganenko 96 V1 model which is briefly presented below. The routine kk97kp corresponds

to this model.

5.7 THE TSYGANENKO 96_V1 MODEL

This model is fairly complete (Ref. 7) and consists of:
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- A ring current

- A model of the warped tail

- return currents on the Magnetopause
- Field aligned currents

- Interplanetary magnetic field

The model is based on a least squares fit of the NSSDC data base. The Magnetopause fits the
Magnetopause model of Sibeck for different Solar Wind pressures. To achieve these results
the variational principle developed by Schulz and Mc Nab has been applied and the magnetic
field escape through the Magnetopause is set to zero or near zero. The adjustable parameters
are:

Pdyn  between 0.5 and 10 Nanopascals
Dst between -100 and +20

By and Bx components of the Interplanetary Magnetic field between -10 and + 10 Nanoteslas.

This model is not a final version. More information on this model and futures updated
versions can be obtained from the author at NSSDC.
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6. CONJUGATE POINT CALCULATIONS

6.1 INTRODUCTION

The determination of conjugate points, points located on the same magnetic field line, implies
the calculation of the field line, also called field line tracing. Four types of conjugate point
calculations are encountered:

- Conjugacy between a point in space and the Earth (north or southern hemisphere)

- Conjugacy between the two hemispheres

- Conjugacy between two points in space

- Conjugacy between a point in space or a point on the Earth and the geomagnetic
equatorial point.

We describe two different algorithms for field line tracing with their respective advantages
and drawbacks. Then we stress the difficulties that can be encountered in the tracing with the
present magnetospheric models.

6.2 DEFINITION OF THE CONJUGACY

Strictly speaking conjugacy between two points is encountered when the two points are on the
same magnetic field line. The strict application of this definition would result in a very limited
amount of conjugate phenomena. In past mission analysis we preferred to define the
conjugacy of two points as the presence of these two points in the same magnetic flux tube.
The width of the flux tube being defined by its extent in invariant latitude and geomagnetic
local time.

Width in MLT

Flux Tube

Width in Ao

Figure 1
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6.3 THE CONJUGACY BETWEEN A POINT IN SPACE AND A
POINT ON GROUND

From a point in space the direction of field line tracing depends wether a northern or a
southern conjugate point is seeked. For spacecraft located at positions S1 and S2 , the
northern conjugate is obtained by a field line integration in the direction of the magnetic field
vector B. On the other side, for a southern conjugate point, the integration is opposite to the
direction of the magnetic field vector. The same considerations apply for the conjugacy
between locations S1 and S2 depending on which starting point is chosen.

Conjugacy in Northern Hemisphere

Field Line Integration along B Conjugacy in Southern Hemisphere

Field Line Integration along to B

S1 S1
Cl \4

C2
S2 S2

Figure 2

The calculation of conjugate points can be done using routines pconjr, dconjr, the last one
being more precise, but requiring more computation time.

6.4 EQUATORIAL CONJUGATE

The equatorial conjugate of a ground station or a spacecraft is obtained by field line tracing
and corresponds to the point for which the magnetic field B is minimum. As the field line
tracing has a finite integration step we do not obtain the true equatorial point but the nearest
point of the field line. In the case of an open field line this equatorial point is never obtained.
Routine econjr calculates the equatorial conjugate.

6.5 THE MERSON ALGORITHM

The Merson algorithm, like the Fehlberg or Dormand Price algorithms belongs to the category
of the imbedded Runge Kutta formulae. These algorithms have been discussed in great detail
in Ref. 1 and 2. The idea is to construct Runge Kutta formulae which contain and expression
¥, of higher order than the usual approximation y;. This expression of y, can be used for the
evaluation of the error and for the step size control. The scheme of the coefficients is given as
in table I
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0
(&) azi
c3 asi asy
Cs sl ds2 s, s-1
b1 by bs-1 [;S
[;1 bAZ As—l l;s
The usual Runge Kutta formula of order p is:
V=Yoot h(btki+....oo.ooooi.l. +b.k,)
while
V=Y, +h(l§1k1 F e + lssks)
isoforderq(q=p-lorq=p+1)
The error estimate is:
Y=n
The table of coefficients for the Merson algorithm is (Ref. 3):
0
1/3 1/3
1/3 1/6 1/6
1/2 1/8 0 3/8
1 1/2 0 -3/2 2
1/2 0 -3/2 2
1/6 0 0 2/3 1/6

The Merson algorithm is employed in routine dconjr.

6.6 THE ADAMS METHOD

The Adams Moulton method of order 4 is a predictor corrector method. The Adams
interpolation formula is

h(, . \ , :
yn+l:yn +ﬂ(9yn+l + 19yn - 5yn—l + yn—Z)



The Adams extrapolation formula is:
h ' " " "
yn+1:yn +ﬂ(55yn - 59yn—l + 37yn—2 - 9yn—3)

Where h is the step of integration. This method is employed in routine pconjr

6.7 FIELD LINE TRACING PROBLEMS

In the early sistxies most of the field line tracing was performed using an internal magnetic
field model like IGRF. As a consequence all the field lines were closed field lines. The
development of more realistic quantitative magnetic field models of the Magnetosphere lead
to a more complex topology: field lines are usually closed in the day side and in the night side
for low geomagnetic latitudes. At high latitudes field lines are not closed and are very
extended. Sometimes, due to the limitations of the models, field lines escape in the dayside of
the Magnetosphere near the Cusp regions and wander in the Solar Wind region where no
magnetic field model has been built. Thus the calculation of the conjugate point in the other
hemisphere is impossible as well the determination of the equatorial conjugate. It is necessary
to set an upper limit to the number of points or to the radial distance to stop the field line
tracing process. It is also necessary to verify that the field line remains inside the
Magnetosphere using for example the Shabansky parabolic Magnetopause or the Sibeck
model. For the same reason it is mandatory to verify that the spacecraft or the starting point is
inside the Magnetosphere before starting a field line tracing. Just because the field line tracing
is time consuming it might be tempting to simultaneously calculate the equatorial conjugate
and then the electric field potential and also the length of the field line. Our experience is not
in favor of such a method. The main reason is the lack of reliability of the software which
must take care of all the impossibilities. If the spacecraft is in the southern hemisphere it is
not always possible to obtain the northern conjugate and the equatorial conjugate (Figure 3).

S1
S2

S3
)

S4

Figure 3

If the spacecraft is in S4 no field line tracing is possible. If it is in S1 field line escape can
occur for some models and usually for hight tilt angles. If the spacecraft is in location S2 the
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northern conjugate can be calculated, thus the invariant latitude the Galperin L and the MLT.
But it will not be possible to calculate the equatorial conjugate as well as the southern
conjugate. However for location S3 all the calculations can be done. In some cases the
Electric field potential cannot be calculated if the location S3 is too far from the Earth. The
escape of the field line from the Magnetosphere during the field line tracing is tested using the
routine mpause.
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7. GEOPHYSICAL PARAMETERS

7.1 INTRODUCTION

In this chapter several important magnetospheric parameters are defined such as the
geomagnetic local time, the Mcllwain L parameter, The Galperin L parameter, the invariant
latitude, the electric field potential of Mc Ilwain. We also define the corrected geomagnetic
coordinates. We retain only the definitions of Hakura and Stasiewicz, the definition of
Gustafsson involving rather complex calculatons. The definition of the corrected geomagnetic
longitude paves the way to the definition of the corrected geomagnetic local time. This
corrected geomagnetic local time can be compared to the «magnetic noon» introduced more
than thirty years ago by Lebeau.

7.2 THE GEOMAGNETIC LOCAL TIME

The geomagnetic local time of a point is defined as:

MLT = (%) +12h

h

Where ¢» is the geomagnetic longitude of the point and ¢no is the geomagnetic longitude of
the Sun.

Figure 1
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The solar magnetic coordinate system is defined as follows: the axis Zsm is along the dipole
and the axis Xsm is such as the plane (Xsm, Zsm) contains the Sun direction. The Ysm axis
forms a right handed triedron. The solar magnetic longitude of point P is counted from the
(Xsm,Zsm) plane. Thus we have also:

Py =Pp —Ppo

Another possible definition of MLT is thus:

MLT =| £ | 4128
15 ),

SUN

Ysm
Psm

Xsm

Figure 2

Two routines calculate the geomagnetic local time of a point knowing its geocentric colatitude
and longitude (tgml) or using the solar magnetic coordinates (tgml2)

7.3 THE MC ILWAIN L PARAMETER

The motion of the charged particles in the radiation belt can be described by two invaraiants u
and / defined as:

U= E d J =0, 1 B d
= an = ——ds
Bm 9{,’ Bm
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Called respectively the first and second invariants. In usual conditions (absence of an electric
field and of magnetic field perturbations ) the energy E is constant. The first invariant reduces
to B, the magnetic field intensity at the mirror point. B is the magnetic field intensity at the
local point of the field line. The integral is along the field line (half bounce trajectory).
Particles with a given B,, and / will drift around the Earth along the same shell. Particles with
different B, and / will drift along different shells. In the case of the Earth , for particles
located on the same field line in the radiation belt, the effect is small. Mc Ilwain has found a

function F (I 3%) which is almost constant along a line of force. For a given B and a given /

it is possible to calculate a shell parameter L which characterizes together with B,, the charged
particle population in the radiation Belt. The invariant / is calculated by the subroutine invar.
For a dipole field the shell parameter L is simply defined by the equatorial point of the
magnetic field line: it is equal to the geoecentric distance of the equatorial point expressed in
earth radii.

7.4 THE GALPERIN L PARAMETER

For the radiation belt region Mc Ilwain derived the L parameter as a function of the second
invariant I and as a function of the local magnetic field. In the outer regions the magnetic field
is highly distorted and Y.Galperin suggested the following recipee for a new L parameter:

- Trace the field line from the point down to the Earth with the complete internal+ external
magnetic field.
- From the conjugate point (110km altitude), calculate the usual Mc Ilwain L parameter.

One should notice that for the second part of the calculation we still use the magnetic field
coefficients and the internal magnetic field model of the sixties.

Field Line (IGRF only)
/ Field line
. (complete field)
A

Figure 3

The Galperin L parameter is calculated by the routines dlgalp and flgalp.
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In 2007, Kosik (Ref.6) has described the quantitative aspects of the Galperin L parameter. In
some sense, the Galperin L parameter can be considered as a geomagnetically corrected
Mcllwain L parameter.

7.5 THE INVARIANT LATITUDE

The invariant latitude is defined as A, :
cos’ A, = !
L

Where L is the Galperin L parameter defined in the previous paragraph. The parameter is
calculated in invlat.

7.6 THE ELECTRIC POTENTIAL

In the equatorial plane, Mc Ilwain (Ref.8) defines a magnetic field model labelled M2 given
by the equation:

18cos* @ 31000

B=6-24cosp + +
v 1+1728/R* R’

Where ¢ is the local time and R the radial distance in earth radii, B is expressed in nanoteslas.
The electric potential in a non rotating reference frame is given by the equation:

P
B
&@=10-92 (mj +§: % A; exp ai(B_Bi)z_bj[l_cos(¢_¢j)]}

i=1 j=1
where the coefficients A4, ai, bi, b;, ¢ are given in Table I. We also have

Ln2 Ln2
a;, = PE =

b, =
; and 7 1-cosC,

B; and d; in Table II are in nanoteslas and ¢, C; are in hours.
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TABLE I

J Ay A Asj Ay Asj Asj o G

1 2.8 54 0.6 2.9 -1.2 0.6 4 2

2 6.0 -1.7 1.7 -1.1 09 -0.2 6 2

3 -6.5 3.2 -1.2 1.9 -1.1 04 6 2

4 5.7 -2.5 1.1 -0.9 0.5 -0.2 10 2

5 -14 1.6 2.2 1.3 -1.2 -0.1 12 2

6 4.5 -3.3 1.0 -2.1 0.5 -0.7 14 2

7 -5.3 0.7 -3.2 0.6 -1.5 -0.1 16 2

8 3.6 -3.8 0. -1.5 -0.2 -0.7 18 2

9 -3.1 -2.0 2.5 -0.6 -1.3 -0.4 20 2
10 1.7 -1.5 0.2 -0.9 -0.3 -0.2 21 1
11 1.0 -1.5 -1.1 -04 -0.6 -0.2 22 1
12 1.7 -0.5 -0.5 -0.6 0.3 -0.2 22.5 0.5
13 2.9 2.1 1.7 -1.2 04 -0.2 23 0.5
14 -0.1 3.6 -4.9 3.5 2.2 0.7 23.5 0.5
15 2.7 34 5.5 -0.6 0.6 -0.5 0. 0.5
16 0.7 5.7 2.1 0.6 0.1 -0.2 0.5 0.5
17 6.0 2.3 2.3 0.3 0.1 -0.1 1 0.5
18 3.5 0.3 2.6 -0.8 0.7 -04 1.5 0.5
19 9.5 5.1 2.8 1.7 -0.7 0.3 2 1
20 3.0 -1.9 2.1 -1.3 09 -04 3 1

TABLE II

i 1 2 3 4 5 6
Bi 0 40 100 180 280 400
d; 30 50 70 90 1102 130

The Mc Ilwain electric potential is calculated in mcilwe.

7.7 THE CORRECTED GEOMAGNETIC COORDINATES

Hultquist (1958a) calculated the spherical harmonic coefficients of the Earth’s magnetic field
in a centered dipole coordinate system. In a later work (Hultquist, 1958b) he calculated the
deviations of the real field line from the dipole field line due to the perturbations cause by the
higher spherical harmonic coefficients. The "integrated deviations" along a dipole field line
give displacement vectors in the northern and southern hemispheres. The corrected
geomagnetic coordinates of a point are the dipole geomagnetic coordinates corrected from the

displacement vector. Hakura (1965) proposed a new method for the calculation of the

corrected geomagnetic coordinates:
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7.8 HAKURA SOLUTION FOR CORRECTED GEOMAGNETIC
COORDINATES

From a point Q on the Earth’s surface a field line is traced down to the dipole geomagnetic
equator with the complete geomagnetic Earth potential and crosses this equator at point A.
From point A a dipole field line is traced down to the Earth (point Qc). This point Qc has the
geomagnetic coordinates (., ¢.) where @. is the corrected dipole colatitude and ¢. is the
corrected dipole longitude. @. is calculated using the geocentric distance of point A:

1

sin> @, =—
r,

e

where r. is expressed in earth radii. The corrected dipole longitude ¢. can be calculated from
the coordinates of point Qc in the dipole coordinate system.

Xd Xd 7d

Dipole Field Line

Real Field Line (IGRF)

Figure 4

The displacement vectors calculated by Hultquist (1958b) correspond to the projections of the
vector QcQ along the meridian and perpendicular to the meridian through point Q.

D

Figure 5
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7.9 GUSTAFSSON SOLUTION FOR CORRECTED GEOMAGNETIC
COORDINATES

Gustafsson introduces the CBM system.

The CBM system is obtained with the Bmin point on a field line. The distance Rz to the Bmin
point of a field line is obtained using the relation:

(")

The equatorial field intensity is calculated with the first three harmonics. The latitudes are
defined by the relation

cos 1=(R, )%

The CBM system introduces the total field in a second step. Field lines are traced to the total
field geomagnetic equator and the minimum B locations are marked with their geographic
coordinates. An origin meridian is chosen. The advantage of this corrected geomagnetic
system lies in the Bmin concept which corresponds to the motion of charged particles which
drift in the equatorial surface.

7.10 STASIEWICZ SOLUTION FOR CORRECTED GEOMAGNETIC
COORDINATES

Hakura obtained corrected geomagnetic coordinates using the magnetic field of the Earth.
Stasiewicz (Ref. 12) extended his results using internal and external magnetic fields. The
recipe is the following:

- From a point P in space a field line is traced down to the Earth using the total magnetic
field (IGRF + Tsyganenko 87 or 89 )

- A point Q on Earth is obtained. At this stage the method of Hakura is used. From this
point a field line is traced down to the geomagnetic equator using the internal magnetic
field only (IGRF). A point A is obtained on the geomagnetic equator.

- From the point A a dipole field line is traced back to the Earth. Point Qc gives the
corrected geomagnetic coordinates.
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Figure 6

The corrected geomagnetic coordinates are calculated in corgm.

7.11 THE CORRECTED GEOMAGNETIC LOCAL TIME

In 1965 Lebeau (Ref. 7) defined the "True Magnetic Noon" as follows:

- For a given epoch A and a given universal time T it is possible to calculate the
geographic location of the subsolar point:

A =—15(T-12)

ps=¢&sin2rw A

The first equation indicates that the subsolar point is at longitude 0 at Noon. The second
equation indicates that the latitude of the subsolar point depends on the season and is null for
the equinoxes.

It is also possible to calculate the geomagnetic location (in the dipole coordinate system) of
the subsolar point. The geomagnetic longitude As of the subsolar point can be calculated for
time T at epoch A.

For all the field lines of geomagnetic longitude As it is "Magnetic Noon" at time T for epoch
A. It is true in particular for all the points of a real field line which starts at a great distance
from the Earth (>6Re) Lebeau traces the dipole field lines of colatitudes 1, 2, 3, 5, 7, 10. They
cut a sphere of 10 Re radius. From these intersections he traces the real field line back to the
Earth down to 100km. altitude. This calculation is performed for 24 values of T. He obtains
"Iso-Magnetic-Noon" curves, which converge towards the "Invariant Pole". There are two
"Invariant Poles", one for the northern hemisphere and the other one for the southern
hemisphere.
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Dipole Field Line
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Real Field Line

Figure 7

This early definition of the geomagnetic time for the description of auroral phenomenon can
be put in perspective with the following definition of the corrected geomagnetic local time by
Stasiewicz.

The usual geomagnetic local time of a point is defined as:

MLT:((D%S%"LI%

Where ¢y is the geomagnetic longitude of the point and ¢u, is the geomagnetic longitude of
the Sun.
The corrected geomagnetic local time MLT. will be defined as:

MLQ:@H%

where @uc 1s the corrected geomagnetic longitude of the point.
In the Hakura approximation, this corrected geomagnetic local time corresponds to the
definition by Lebeau of the "Magnetic Noon".

7.12 APPLICATIONS OF THE GALPERIN L PARAMETER

In the outer magnetosphere directionnal fluxes are adequately described by the Galperin L
parameter as is shown in the following figure: a bunch of particles (arrow) measured on the
equator will have a dipole L parameter of 5.2,. As this bunch of particles bounces along the
real field line the dipole L value will change to 6 and mirror for L = 7. The use of the L
dipole for labelling directionnal fluxes induces a continuum of L values between 5.2 and 7. If
one uses the Galperin L parameter we have a unique label for the directionnal flux along the
distorted field line : the Galperin L parameter is obtained by tracing the real field line to the
Earth, than trace back to the equator. Here the Galperin L value equals 7 and remains constant
for this bunch of particles along its bounce motion.
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L Galperin L

Figure 8

The Galperin L parameter has been successfully used by Mcllwain and Kerr (Ref. 10) for the
association of Cluster data with auroral displays. As mentionned by these authors another
advantage of the Galperin L parameter is the possible labelling of open field lines as one
traces the total magnetic field line down to the Earth and then one calculates the Mcllwain L
value with the internal field only.

There is also a link between the Galperin L parameter and mathematical models of the
magnetosphere. As an example we consider the very simple Mead (1964) magnetic field
model of the magnetosphere where we retain only the first three harmonics (Kosik, Ref. 5) :

V =l2 g’ cos@+rg’ cosh+ % 7’ g, sin26 cosg
r

In this expression r, 6, ¢ are the spherical coordinates, r is the radial distance expressed in
Earth radii, € is the colatitude counted from the north and ¢ the longitude counted from the
noon meridian. The first term is the dipole magnetic field (g1° = - 0.31 gauss) the second term

is an axisymmetric compression term (g, = - 0.00025 gauss) and the third term is the noon-
midnight asymmetry term (g, =- 0.000012 gauss). It was possible to calculate the equations
of the field lines using the perturbation theory (Kosik, Ref. 5):

—0 —0)\? -1 .4 . 9
r=Lsin’ 1_lg_10 I sin? 0+ > g—'o L°sin'2 6+ 243 g—é L{sm_@_sm Hjcos%
2g 4 g 7 3

&
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—1
¢=¢0+£§L“ sin’ @ sin ¢,
1

In the following picture we have traced a field line of the model and its associated dipole field
line which has the same L value:

4
dipole field line i3
\ .-
e
s T2
/
7 Model field line

Figure 9

A bunch of particles will follow the model field line and the directionnal flux and according
to the Galperin definition will have the label L of its associated dipole field line. From the
field line equations above we notice that the Galperin L parameter is indeed the L parameter
in the above equations. There is a one to one correspondence between the Galperin L and the
mathematical description of the model. As a consequence all the mathematical results for the
description of the particle motion or the fluxes can also be viewed in terms of the galperin L
parameter. For example the drift shell equation appears as a relation between Galperin L
parameters of different longitudes:

-1

L=L,|1+ g_é Ly p(6,)(cosg—cosg,)
&

1

where L is the Galperin L parameter at longitude ¢ and L, is the Galperin L parameter at
longitude @,. In this equation p(@m) is a function of the miror point colatitude &, of the
particle.

These examples show the possibilities offered by the Galperin L parameter for the labelling of
fluxes and the modelling of charged particles motion.
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8. ASTRONOMY AND CELESTIAL MECHANICS

8.1 INTRODUCTION

Mission Analysis and Space Science data treatment require orbital calculations as well as
various astronomical informations such as the Inertial and Greenwich frames of reference, the
Sun position and motion, sideral time,.... Due to the attraction of the Sun, the Moon and the
planets the inertial frame of reference is not exactly inertial, the Ecliptic changes slowly as
well as the Celestial Pole. In the present chapter a short review of all this material is made.
For further details a small bibliography is given at the end of this chapter.

8.2 FRAME OF REFERENCES

The Azimuth-elevation coordinate system:

In this system the observer is at the origin of the coordinate system. The fundamental plane is
the local horizon and the Z axis is the normal to the free surface of a liquid. In this coordinate
system a direction is defined by two angles:

- The azimuth, A, counted positive from the local north in the clockwise sense.
- The elevation, h, counted positive towards the Zenith from the local horizon and negative
towards the Nadir.

North ] / South

Figure 1
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The hour angle - declination coordinate system:

This coordinate system is linked to the center of the geoid and is defined in the following
way:

- The Astronomical Meridian is a vertical plane which contains the axis joining the two
Celestial Poles. The elevation of the North Pole is also the astronomical or geographic
latitude of the point. The Celestial Equator has its center at the geocenter and is
perpendicular to the axis joining the two Celestial Poles. The Astronomical Meridian
contains the local normal at the observer’s location. A point on this Celestial Sphere is
defined by two angles:

- The hour angle, H, counted positive westwards from the local Astronomical Meridian.

- The declination, &, counted positive towards the North Pole and negative towards the
South Pole.

Zenith

Celestial pole —_

Equator

North South

Figure 2

The right ascension - declination coordinate system:

This coordinate system has its center at the center of the geoid. The Equator is the Celestial
Equator defined in the previous paragraph. The position of an object is defined by the
declination defined in the previous paragraph. The other coordinate is the right ascension, «,
counted positive eastwards from the Vernal Point y. There is a relationship between the
sideral time T, The hour angle H, and the right ascension « of any celestial object:

H=T-«
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When the celestial object is the Vernal Point y, & = 0. The sideral time is also the hour angle
of .

P V4
‘v

Q

Figure 3

The right ascension with respect to the CNES Vernal Point 1950* is calculated in routine
tsidrg. The right ascension with respect to the Mean Vernal Point* is calculated in routines
soltervo, solterv, solter00, solter05, solter10, solter15 and solter20. These last routines
differ only in the calculation of thetdip, phidip, which describe the tilt of the dipole from 1945
to 2020. The transformation of the coordinates and velocity components of a spacecraft from
the inertial coordinate system to the geocentric coordinate system is performed in pvig.

The Sun Position and Motion:

In the Celestial system the Sun moves along the Ecliptic. The inclination of the Ecliptic
versus the Equator is called Obliquity &.

* See paragraph 8.3 for details
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Figure 4

The Ecliptic and the Equator cross each other at the Vernal Point y, ascending node of the
Ecliptic. The position of the Sun along the Ecliptic is defined by its longitude Lo counted
from the Vernal Point. It is possible to calculate the right ascension and declination of the Sun
by solving the spherical triangle:

sind, =singsinL,
sing, =cote tanod,

cosa, =cosL, /coso,

The calculation of the Ecliptic longitude as well as the right ascension and the declination of
the Sun are given by Russel (Ref. 1). The right ascension and the declination of the sun are
calculated in routine sun. The obliquity is also calculated in routine sun. These results can
also be found in routines solter20, solter15, solter10, solter(05, solter00, solterv, soltervo.

8.3 FRAME OF REFERENCES REVISITED (IT WAS TOO SIMPLE!)

As mentioned above the origin of the right ascensions is the Vernal Point and this Vernal
Point is defined as the intersection of the Celestial Equator and of the Ecliptic. Unfortunately,
the Earth is submitted in its motion around the Sun to the gravitational influences of the Sun
and the Moon as well as the other planets. The Sun and the Moon act on this ellipsoidal
shaped body and the resulting attraction creates a torque: the Pole of the Earth is subject to the
Precession and Nutation. On a very small scale the Pole of the Earth has an erratic motion due
to the tides. All these perturbations change the location of the Pole, thus the location of the
Vernal Point. It is therefore necessary to define very clearly these different effects.
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Motion of the Pole of the Earth:

The true Earth’s frame of reference OXYZ is defined in the following way:

Origin O at the barycenter of the Earth

Z axis in the direction of the true Pole Pv (axis of the instantaneous rotation of the Earth)
X axis in the true equator plane, the plane XZ contains the origin of the longitudes Go
(convention)

4 Po

True Equator

Figure 5

The location of Pv changes with time and its location is defined by its coordinates in an
arbitrarily fixed frame called CIO-BIH.

The Motion of the Ecliptic:

The Ecliptic is defined as the intersection of the Celestial Sphere with the orbital plane of the

Earth around the Sun.

The Ecliptic plane has a secular motion and at a given time the Ecliptic plane E(t) is defined

with respect to the reference Ecliptic E(o) through some angle d.
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Figure 6

Precession and Nutation of the Earth:

The motion of the Earth around its barycenter is subject to the perturbations caused by the

Moon and the Sun. These perturbations have two effects:

- A secular motion called Precession (26000 years period)
- A short periodic oscillation called Nutation (18.6 years period)

Q

Pole of Ecliptic

Mean Celestial Pole pm
Pv

True Celestial Pole

Nutation Ellipse
True Celestial Pole
Pv

<—Pm
Megh Celestial Pole

Figure 7
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The Mean Pole motion is subject to Precession only: It is possible to define a Mean Celestial
frame of reference with axis Z through the Mean Pole Pm and X axis at the intersection of the
Mean Equator and the Ecliptic. Star catalogue information is given in the Mean Celestial
frame of reference. The intersection of the Mean Equator with the Ecliptic defines on the
Celestial Sphere the Mean Vernal Point.

The true Pole Pv of the Earth results from the Precession and the Nutation effects. The true
Celestial frame of reference has axis Z through the true Pole Pv and the axis X is the
intersection of the true Equator and the Ecliptic. The intersection of the true Equator and the
Ecliptic defines on the Celestial Sphere the true Vernal Point.

CNES introduces a Modified Vernal Point which is the projection of the Mean Vernal Point
1950 on the true Equator of date.

For the Cluster project, the orbital information is given in a mean equatorial system of Epoch
2000,0. For Epoch 2000,0 the Vernal Point 2000,0 is at a given location intersection of Mean
Equator for 2000,0 and Ecliptic for 2000,0. For another Epoch, 2001,0 for example, it is
necessary to calculate the location of the Vernal Point 2001,0 and we take into account the
Precession between these two epochs.

For Interball we transform the orbital elements calculated by the Russian Space Agency and
given in a mean equatorial system 2000 into the CNES true Equator system. In this
transformation we take into account the Precession and the Nutation effects. The introduction
to the Precession and Nutation calculations involves the knowledge of the Astronomical Time
References.

8.4 THE ASTRONOMICAL TIME REFERENCES

The Julian Date:

The Julian date defines a decimal date counted since the 1st January 4713 B.C. Julian Days
startat 12 h U.T.

The Julian Day 0,1900 corresponds to the 31st of December 1899 at 12h U.T. Its Julian Date
i1s 2415020.0 and Julian Day January 0,1950 corresponds to Julian Date 2433282 (31st of
December 1949, 12 U.T.)

The Modified Julian Date:

The origin is November the 17th 1858 at Oh U.T. The relationship between the Modified
Julian Date and The Julian Date is

MJD =JD - 2400000.5
For January 1st 1950 at Oh U.T. the modified Julian date is

MJD1950 = 2433282.5 - 2400000.5
MJD1950 = 33282.0
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The CNES Julian Date:

The CNES Julian Date JUL is counted from January 1st 1950 at Oh UT
For January 1st 1950 Oh UT JUL = 0.
For any other date we have

JUL =MIJD - MJD1950 =JD - 2433282.5

For January 1st 2000, Oh U.T., JUL = 18262

The CNES julian Date is calculated in routine julg. It is always necessary to add the fraction
of time between the hour, min, sec of the date and OhOminOsec. For example the julian date
for

January, 2, 1990 is: 14611., the Julian date for January 2, 1990 at 18h15min 6sec is simply

14611 + (18x3600 + 15 x 60 + 6) /86400. = 14611.760486
Routine calendg transforms an integer Julian date into a Gregorian date (year, month, day).
djgreg transforms a Julian date and its fraction into a Gregorian date (year, month, day, hour,

minutes, seconds). A useful routine datjhms transforms an interval in seconds into days,
hours, minutes, seconds.

Epoch J2000:
Epoch J2000 is defined as January 1st, 2000 at 12h U.T.
J2000 corresponds to Julian date JD = 2451545.0

The Modified Julian Date 2000 of ESOC:

For the Cluster Project, ESOC introduces the Modified Julian Date 2000, MJD2000. It is
chosen to be zero for January 1st, 2000, at Oh U.T. For dates prior than January 1st 2000 this
Modified Julian Date is negative.

MID2000 = MJD1950 - 18262 =JD - 2451544.5

Routine jd2000 transforms a gregorian date into the ESOC julian date with respect to the
reference epoch 2000.

8.5 THE CALCULATION OF THE PRECESSION AND THE
NUTATION

The precession matrix:

The precession matrix converts a vector in the mean geocentric equatorial system of 2000.0 to
the mean geocentric equatorial system of date. (The Mean Pole Pm moves from Pm(2000) to
Pm(t)).
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This precession matrix is the products of three elementary rotations:
- lrst rotation around axis Z0 by an amount -C, gives new axes X1,Y1,Z1
- 2nd rotation around axis Y1 by an amount 0, gives axes X2,Y2,72

- 3rd rotation around axis Z2 by an amount -z, gives axes X3,Y3,Z3

The product of the three matrices gives the final matrix:

with:
P,= cosZ, cosf, cosS,—sinZ, sing,
F,=-cosZ cosf,sm¢,—sinZ, cosé ,
P,=—-cosZ, sin0,
P, = sinZ, cosf, cos{,+cosZ sing

,=—sInZ, cosf, sing , +cosZ, coss
,=—sinZ,sin@,

b,
B,
P, = sm@, coss,
P,=-sinf,smg,
P,

,= cosd,

The angles &, 6, Z, are defined as:

¢, =2306"2181T +0".301887* +0".017998T"
0,=2004"3109T +0".42665T> — 0".0418337"
Z,=2306"2181T +1".09468 T + 0".018203 7"

Where the angles have to be converted in radians. T is the time interval expressed in Julian
Centuries since epoch J2000.

If JD is the Julian date, the time interval in centuries is:

_ JD—2451545,
36525.

Using the Modified Julian Date MJD2000 of ESOC T'is also expressed as:

_ MJD2000-0.5
36525

Since there is a difference of 0.5 days between Epoch 2000 and MJD2000.
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The precession matrix which transforms a vector in the inertial coordinate system J2000 into a
vector in an inertial coordinate system of another Epoch is calculated in routine pr2000.

The Nutation:

The transformation of the coordinates of a point given in the Mean Equator of date, to the
coordinates in the true Equator of date involves three rotations. A rotation & from the Mean
Equator to the Mean Ecliptic of date, a rotation from the Mean Vernal Point to the true Vernal
Point y.)v= A ¥ and a rotation from the Mean Ecliptic to the true Equator &.

Mean ecliptic of date

el Mean equator of date

ym

€ True equator of date

v

Figure 8

It is possible to choose between the theory of Newcomb or the theory of Lieske.

The nutation has rather small effects with a period of 18.6 years. The true Pole describes an
ellipse around the Mean Pole and at the same time the Mean Pole drifts due to the precession.
As a consequence the true Pole describes a winding curve around the Ecliptic Pole. The true
Vernal Point moves around the Mean Vernal Point and the true Celestial Equator oscillates
around the Mean Celestial Equator. The motion of the true Vernal Point (Nutation in
Longitude N) is given by:

v,7, =N=—17"23sin60

The inclination of the true Equator with respect to the Mean Equator changes with time
(Nutation in obliquity):

Q=¢-¢,=9"21cosO

Where 0 =259°8'-69629" (¢t —1900,0)

time ¢ is expressed in tropical years. The tropical year is the interval of time which
corresponds to a change of 360° of the mean longitude of the Sun.

&, and gy are the mean and true obliquities.
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Transformation of a vector from the Mean reference frame J2000 to the Mean reference frame
of another Epoch or to the true reference frame of another Epoch:

The Mean reference frame J2000 is defined as OXYZzooowith axis OZzo00 through the Pole
Pmaooo and axis OXa00 through the Vernal Point ymaooo. This Vernal Point is defined as the
intersection of the Ecliptic2000 and the Mean equator 2000. For another Epoch t the axis OZ,
crosses Pole Pm, and axis OX, is the intersection of the Ecliptic and the Mean Equator at
Epoch t. The transformation between these two reference frames is the Precession Matrix
from Epoch 2000 to Epoch t.

If we want to transform from the Mean reference frame at Epoch 2000 to the true reference
frame at Epoch t, we first perform the transformation from the Mean reference frame at Epoch
2000 to the Mean reference frame at Epoch t, then we apply the Nutation transformation from
Mean reference frame at Epoch t to the true reference frame at Epoch t. For Cluster the
second transformation is neglected.

8.6 THE DIFFERENT SIDERAL TIMES

It is possible to define the true sideral time 7, which corresponds to the true Vernal Point and
the Mean sideral time 7, which corresponds to the Mean Vernal Point. The difference
between the two sideral times corresponds to the angular separation between the two Vernal
Points caused by the Nutation and projected into the equatorial plane:

T =T —Ncoseg

The formula for the mean sideral time is:

7..,=99°.6909833 + 36000°.7689 C + 0°.0001525 (1)
where Co JD —2415020.0
36525

C are the Julian centuries. Each Julian century has 36525 Julian days.
2415020.0 corresponds to December 31st 1899.

Formula (1) corresponds to the mean sideral time of Greenwich at Oh UT. At any other time
of the day t, the Greenwich sideral time is:

T = ]-;11,0+0.t

m

where t is the Universal Time UT and @ is the angular velocity of the Earth expressed in
degrees per solar minute.

0 =0.25068447 ° / mn
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The mean sideral time defined by Russell (Ref. 1) is the same but expressed differently:
T.= 99°.690983 + 0.9856473354 x DJ + 360° x FDAY

Where FDAY = Number of seconds in the day divided by 86400
And DJ =365 x (IYEAR - 1900) + (IYEAR - 1901) / 4 + IDAY - FDAY - 0.5

Where IYEAR is the year number
IDAY is the day number in the year

This formula is valid between 1901 and 2099. This formula is calculated in routines sun,
solter20, solter15, solter10, solter05, solter00, solterv, soltervo.

CNES defines the sideral time with respect to the CNES Vernal Point and uses the CNES
Julian Date:

To= 100°.075542 + 360°.985647348 x JUL + 0°.2900 x 10~ x JUL?

Where JUL is the CNES Julian Date counted from 1st January 1950, Oh U.T. The CNES
sideral time is calculated in routine tsidrg. The CNES Julian date is calculated in routine julg.

8.7 COORDINATE TRANSFORMATIONS FOR AN OBLATE EARTH

Transformation from geodetic coordinates to geocentric coordinates:

ZA
p
o
r
h
b
p
P
0
B ’ &
>» X
a
Figure 9
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From the above figure we can calculate the geocentric coordinates. If a and b are the semi-

major and semi-minor axes of the Earth’s ellipsoid, the equation for the ellipsis is:
2 2
X"z
—to5=1
a

From the gradient we derive the components of the normal to the ellipsoid surface:

2x ~ 2z &
—i+— k
a N b°N

<

Where N= H@H

e also have Ve xB
a2
asz=psin B, x = pcos f3 tan/1=b—2tanﬂ

sin A

4 2
(sin2 A+ 2—4 cos’ /IJ

Expressing sin £ as a function of tan f we obtain sin f =

we also have: p* = a? cos® B+ b* sin’
but b =a’(1-€%)

We get :

p=a+1-e’sin’ f

The rectangular coordinates of the point P are:

x=pcos f+hcos
x=psin f+hsin A

It is easy to obtain the radial distance » and the geocentric colatitude & of the point P.

The transformation from geodetic coordinates into geocentric coordinates is performed in
routine gdvgc.
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Transformation from geocentric coordinates to geodetic coordinates:

This transformation formula has been developed by J. Morrison and S. Pines (Ref. 2).

rcos ¢=(h+c)cos A
rsin o= (h+s)sin A

where C=(1 — ¢’ sin’ /1)E and s=(1-é)c

The couple of equations can be solved:

2 sin A

tan A =tang +
peos (1—e*sin> )"

The solution of this equation is obtained by the Lagrange expansion formula. The geodetic
latitude is given by:

A=@+ax(e, p)sin2p+ as (e, p) sin 4o+ as (e, p) sin 6+ as (e, p) sin 8¢

a, = 10214p (512¢7+128¢* +60e°+35¢" ) + 321/)2 (¢f +¢*)- 2o ~(4e® +3¢°)
a, =—@(64e4 T 48¢° + 356" )+ 161/) (4" +2¢° +¢*)+ 2156p p4

(4e6 + 368)

3 3 3
ag = 1024, (4e6 + Seg)—w(e‘S + eg)+ 7685,03

a, = e —-y
“T2048l p pt P P

e* [ 5 64 252 320}

where € =2¢- &

and ¢ is the flattening of the Earth. The transformation from geocentric coordinates into
geodetic coordinates is performed in routine gevgd.

8.8 A SIMPLIFIED APPROACH TO THE DEFINITION OF THE
SIDERAL TIME

In this paragraph we give a simplified formula for the definition of the sideral time which can
be useful for a first approach in mission analysis.

According to A. Danjon (Ref. 3) the sideral time is the hour angle of the Vernal Point y. We
don’t know a priori where is located 7. However we know where is located the Sun with
respect to Greenwich through the Universal Time UT and we also know the location of the
Sun for some well defined epochs of the year.
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At 12h UT the Sun is in the Greenwich Meridian and the 21st of March the Sun is at the
Vernal Meridian 7. As the hour angle is counted from Greenwich, the 21st of March at 12h
U.T. the Greenwich sideral time equals the hour angle and is 0.:

Situation 21st of March
12h UT

Ecliptic

Equator

Sun

Figure 10
If J is the day of the year, the 21st of March corresponds to J = 80; Thus for 12h UT we have:
sideral time at 12h UT =-80 +J
For the 21st of June, the 21st of September and the 21st of December at 12h U.T. the Sun and
the Greenwich Meridian are located at points 1,2,3:
Using the previous formula the sideral time is respectively 90°, 180°, 270° for points 1, 2, 3
for 12h U.T.

For a Universal Time different from 12h U.T., the Greenwich Meridian has rotated eastwards
and the angle of rotation « is simply:

a=UT-12)x 15°
2 21st September

270° 180°

1
21st June

21st October
3

90°

21st March
Y

Figure 11
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We thus have the general formula:
Greenwich sideral time at UT = sideral time at 12h UT + (UT-12) x 15°
Taking into account the definition of the sideral time at 12h U.T. we get:
Greenwich sideral time day J at UT =100°+J + UT x 15°
With this formula, it is therefore possible to locate the Greenwich Meridian with respect to the
Vernal Point, knowing the day of the year and the UT.
For the 1st of March at 10h U.T., we have ] = 60, UT = 10. We get
Greenwich sideral time = 100° + 60° + 150° = 310°

The above result is approximate as well as the above formula but it helps finding the
astronomical situation and locate Greenwich with respect to the Vernal Point.

8.9 CELESTIAL MECHANICS

Orbital calculations:

Orbital calculations of highly eccentric orbits require precise integration methods such as the
Runge Kutta methods developed by Fehlberg or Dormand-Price. In these methods an upper
limit of the error is imposed and the iteration process continues until the limit is reached. This
iteration process is done for each integration step. As a consequence the orbit extrapolation is
time consuming. Moreover the computer code must be provided to all users and increases the
risk of unproper use. ESOC has developed an elegant method for orbital calculations which
does not require much computer code for non expert users. This method is not time
consuming and can be summarized as follows:

- The orbit determination and calculation is initially made in ESOC with all the necessary
tools and methods in order to achieve the best precision.

- Each orbit is divided in a finite number of intervals.

- For each interval the average keplerian elements are calculated.

- A fit of the precise orbit is made using the keplerian orbit and Tchebycheff polynomials.

As a consequence the final user needs to have only the final keplerian elements for each
interval and the associated Tchebycheff polynomials. The reconstruction is made by one
routine called orbit. This routine reads a file provided by ESOC the keplerian elements and
the Tchebycheff polynomials and reconstructs for a given time the exact position and velocity
of the spacecratft.

ESOC provides the orbital information in an inertial frame of reference Epoch 2000. For
Epoch 2000 the Vernal Point is defined as the intersection of the Mean Equator and the
Ecliptic for this Epoch. As mentioned in the previous paragraphs it is necessary to take into
account the precession between Epoch 2000 and the current Epoch. The precession matrix
provided by ESOC, routine pr2000, transforms a position-velocity state vector for Epoch
2000 in a position-velocity state vector for the current Epoch. The routine posin calculates at
a given time the position-velocity state vector of a Cluster spacecraft using successively the
orbit and pr2000 routines.
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9. MATHEMATICS

9.1 INTRODUCTION

In this section we describe the routines encountered in the transformation of vectors,
conversion of angles,......

9.2 ANGLE OF A VECTOR WITH RESPECT TO AXIS X IN A (X, Y)
COORDINATE SYSTEM KNOWING ITS TWO COMPONENTS X AND
Y

Given two components x, y of a vector it is possible to calculate the angle between 0, 27 using
fortran function a tan 2:

a=atan2(y,x) (1)

This calculation is performed in routine angleg. For x, y both zero, the routine returns o= 0
and in other cases « is always positive.

9.3 TRANSFORMATION OF THE CARTESIAN COORDINATES OF
A POINT INTO ITS SPHERICAL COORDINATES

v

X

Figure 1

The spherical coordinates (7, 6, ¢) are obtained from the cartesian coordinates (x, y, z) using
the following formulae:
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0=acos(z/r) ()
gp:atan2(y,x)

01s the colatitude and ¢ is the azimuth.

We define 7, =+/x” + y* . If , # 0 the above formulae can be applied.

If r,= 0 we set @ =0 and we have two possibilities:

z>0then =0
z<0then 8= r

This transformation is performed in routine carsp.

9.4 TRANSFORMATION OF THE SPHERICAL COORDINATES OF A
POINT INTO ITS CARTESIAN COORDINATES

The transformation from spherical coordinates to cartesian coordinates is defined as:

x=rsinfcose
y=rsinf@sing 3)

z=rcos@

where @1is the colatitude of the point and ¢ is the azimuth. r is the radial distance to the origin.
This transformation is performed in routine spcar.

9.5 PRODUCT OF A COLUMN MATRIX BY A RECTANGULAR
(UNITARY) MATRIX

The product is defined by the formula:

3

yi=%a;x, 4

The matrix a, is a matrix of dimensions (3,3), vectors x, y have three components (x1, y1, z1)
and (y1, 12, 13).

This calculation is performed in the routine promal.
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9.6 PRODUCT OF TWO UNITARY MATRICES

The product of two matrices is defined as:

3 k i
cij:kz1 a; bj

The transpose (inverse) matrix is defined as ¢/=c’

The product of two matrices of dimension (3,3) is performed in routine promat which also

provides the inverse matrix of the result.

9.7 TRANSFORMATION OF THE RECTANGULAR COMPONENTS
OF A VECTOR INTO SPHERICAL COMPONENTS

—_——
—
—_——

Vy

Figure 2
If point A is located in (7, 6, @) we get:

V = (Vx cos@ +V, sin go)sin 0+V_cosl
V,= (Vx cos@ +V, sin (p)0050 —~V_sin@
V,=V, cosp—V sing

This transformation is performed in routine vearvsp.

-
-~ -

—_
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9.8 TRANSFORMATION OF THE SPHERICAL COMPONENTS OF A
VECTOR INTO RECTANGULAR COMPONENTS

Z
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X
Figure 3
We get:
=V, sin@+V, cos@)cosg -V, sing
v, :(Vr sin@+V, cos<9)sing0+V¢ cosQ (7
V.=V cos@—V,sinf

The transformation is performed in routine vspvcar.

9.9 LAGRANGE INTERPOLATION FORMULA

Interpolation can be performed by a Lagrange polynomial of order 2. Using the definition of
Abramowitz and Stegun (Ref. 1) we have:

F0)=2 1), ®)
__ ()
wee T )
| | (et )eeeeee (e m o, )(r ity )eeeeeeeee (r—x)
() is of the form: (x, — ) (ox ) =)o (x, —x)
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We obtain for n =2

and the interpolation formula for n = 3 is:
f(x):lo(x)fo + ll(x)fl + lz(x)fz

where fo, f1, /> are the values of f(x) at points xo, x1, x2.

This formula has been used for the calculation of the conjugate point at a given altitude or at

the surface of the Earth using three calculated points.

Ref.1 M. Abramowitz and I. A. Stegun : Handbook of mathematical functions, 1968,
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